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Abstract

Data has become an indispensable part of our life. However, current mainstream

commercial search engines do not support specialized functions for dataset search.

A dataset usually consists of both metadata and data content. Existing information

retrieval models designed for Web search cannot efficiently extract semantic infor-

mation inside structured datasets. Developing new algorithms for next-generation

search engines to efficiently find datasets can benefit data practitioners in their data

discovery experience.

In this dissertation, we consider how to effectively perform dataset search and

augmentation. We start by providing an end-to-end description of a dataset search

engine following the lifecycle of datasets. Our review includes web dataset acqui-

sition techniques, dataset profiling and augmentation methods, and dataset search

tasks and corresponding methods. In order to extract datasets from research arti-

cles, we present an information extraction framework to determine triples of interest

which can be used for academic dataset search. We also propose a feature-based

method to augment tabular datasets with additional schema labels to help users and

systems to better understand the datasets. We develop three methods for tabular

dataset search: the first one utilizes generated schema labels to enhance the search

results; the second one adopts the pretrained language models to learn the matching

features; the third one models the complex relations in the datasets as one or more

graphs and uses graph neural networks to learn representations of queries and tables.

To support dataset search in which a query is also a dataset, we propose universal

dataset encoders which regard a dataset as a point set so that the encoded dataset

representations can be used to search for similar datasets. Extensive experiments

across multiple tasks demonstrate the superiority of our proposed methods over the

state of the art.

1



Chapter 1

Introduction

1.1 Overview

In the era of big data, many people rely on datasets for their work: data journalists

need datasets to tell a good story and researchers use datasets for their research

experiments. Today there are more than 1,000 data repositories [161] across various

research disciplines. According to Google’s statistics [23], the number of datasets

grew from 6M in 2018 to 28M in 2020. With increasing volume of datasets available

on the Web, finding desired datasets becomes a non-trivial task for modern search

engines.

One of the challenges in dataset management and search is the heterogeneity

of datasets. A text document can be a dataset. A set of extracted relational RDF

triples from a text document can also be a dataset. A table embedded in a document

or a Web page can be a dataset. We use the following definitions to define a dataset

and its components:

Definition 1.1.1 (Dataset). A dataset is an entity that consists of dataset content

and the metadata describing its dataset content.

Definition 1.1.2 (Dataset Content). The dataset content of a dataset is a col-

lection of related observations, organized in certain format.

2



Definition 1.1.3 (Metadata). The metadata of a dataset is the data that provide

information about the content of the dataset.

By these definitions, a dataset can be accurately described by its metadata no

matter in what format the dataset is stored. Common metadata fields include the

name of dataset provider, title, textual description and related hashtags of a dataset.

In previous work like Chapman et al. [47], they refer to dataset content defined here

as the dataset. However, a collection of related observations or records alone are

not enough to describe a dataset. Considering the case where we need to annotate

one hundred Yelp reviews for a text classification task and there are two groups

annotating the same collection of reviews, it is possible that the two groups agree

on all annotated labels. In this case, we obtain two datasets whose dataset contents

are the same. But we can still consider them as two distinct datasets since they can

have different metadata describing who are the annotators. Metadata is essential to

resolve dataset duplication and provenance [34].

Different data portals use different dataset management systems. For example,

the Open Data portal1 hosted by U.S. General Services Administration uses catalog

software called CKAN2 to manage public datasets. With CKAN, dataset publishers

are able to upload datasets in their raw formats, with additional metadata such as

title, description and hashtags. However, current data management systems have

some limitations. First, only the metadata of datasets will be used to produce rank-

ing results. The reason is metadata consists of multiple text fields, while datasets

are stored in raw formats. This metadata-oriented ranking strategy can cause prob-

lems when the metadata of a dataset is incomplete or of poor quality. In other

words, those frameworks do not support the indexing of dataset content and there-

fore could lead to inefficient matching between query terms and dataset content (in

text format). According to Benjelloun et al. [23], about 37% of datasets are in table

format which are stored in CSV files or XLS files. Tables represent relational data

compactly and contain rich information. For example, the table headers usually

represent high-level concepts, which may not be described in metadata. Without

1https://www.data.gov/
2https://ckan.org/about/
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Figure 1.1: The result presentation page of Google Dataset Search.

indexing the content of tables, important matching signals could be missed. Sec-

ond, there is no unified schema for dataset metadata. Schema.org3 is widely used by

search engines while other open standards for dataset metadata also exist such as

the W3C Data Catalog Vocabulary (DCAT)4. An ideal dataset management system

should enable a dataset search engine to rank datasets from heterogeneous resources

which can be described with different metadata standards. In 2018, Google launched

their dataset search engine [34] in the context of the entire Web. As shown in Figure

1.1, the returned datasets are from multiple sources. However, as mentioned above,

the ranking results are based on the matching of metadata and the attached dataset

content are not analyzed. Empowering a dataset search engine with the ability to

analyze dataset content such as tables could be challenging but useful. In this dis-

sertation, we focus on how to use dataset content (e.g., tables) for dataset search

and metadata augmentation.

3https://schema.org/docs/about.html
4https://www.w3.org/TR/vocab-dcat/
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1.2 Contributions

In this dissertation, we mainly focus on developing new algorithms for dataset search

and metadata augmentation. We summarize the major contributions of this disser-

tation as follows:

• We systematically discuss different aspects about a dataset search engine.

Specifically, we review techniques of dataset acquisition that can obtain datasets

for dataset search engines, various dataset management tasks that can help

search engines better understand the content of datasets, and multiple types

of dataset search tasks.

• We propose a dataset acquisition method to extract RDF datasets from re-

search articles. We first propose Machine Learning Progress Ontology (MLPO)

which defines data of interest.We show how information extraction techniques

can be used to extract datasets defined in MLPO which can support various

downstream tasks including academic dataset search.

• We introduce a feature-based method for schema label (table header) gener-

ation, which can be considered as a data augmentation method for tabular

datasets. Through schema label generation, more common schema labels can

be provided to allow for broader schema matches in contexts such as dataset

search and data linking.

• We propose a two-stage schema label enhanced ranking framework for table

search. In the first stage, a schema label generator is trained to generate

additional schema labels for each table column. In the second stage, given a

user query, tables are ranked together with generated schema labels.

• We propose a table search method based on a pre-trained language model (BERT).

Multiple methods are proposed to encode table content considering the table

structure and input length limit of BERT. We also develop an approach that

incorporates features from prior literature on table retrieval and jointly trains

them with BERT.
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• We model the complex relations in a table corpus as one or more graphs and

then utilize graph neural networks to learn representations of queries and ta-

bles. We show that text-based table retrieval methods can be further improved

by graph-based predictions which fuse multiple field-level information.

• We represent a dataset as a point set and propose different dataset encoders to

learn dataset representations. We show that dataset representations learned

by dataset encoders can be used to for dataset retrieval where a query is also

a dataset.

1.3 Organization

The rest of the dissertation is organized as follows:

• Chapter 2 provides an overview of a dataset search engine. We first describe

current dataset search engines. Then we discuss methods to obtain datasets

that can be indexed by a dataset search engine, various tasks for better dataset

management and different forms of dataset search tasks.

• Chapter 3 presents an ontology that can guide dataset extraction from research

documents. We show how the extracted data can be used for downstream

applications such as academic dataset search. Material in this chapter was

published as a poster in 2020 [56].

• Chapter 4 presents a novel feature-based method for schema label generation.

We propose various features for a column in a table which are further used in

a multi-class classification framework to predict the column’s schema labels.

Material in this chapter was published as a paper at a workshop in 2018 [54].

• Chapter 5 investigates how to use generated schema labels for dataset search.

A collaborative-filtering method is proposed to learn schema label features.

After generating schema labels, we propose a mixed ranking strategy to incor-

porate schema labels into the final ranking results. Material in this chapter

was published as a paper in 2020 [55].
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• Chapter 6 presents how to use pre-trained language model to extract table

features. We propose different table linearization strategies to construct input

for BERT. We show the powerful features extracted from BERT can benefit the

table search task on multiple datasets. A Web table usually has rich context

information such as the page title and surrounding paragraphs. Therefore,

we propose a new test collection for Web table search which not only provide

relevance judgments for query-table pairs but also query-context pairs for each

context field which are ignored in previous test collections. Material in this

chapter is from two papers published in 2020 [57] and 2021 [59].

• Chapter 7 proposes a graph-based method for ad hoc table retrieval. By

explicitly modeling the table corpus as one or more graphs, we directly encode

the structural information of the table which is often ignored by previous

methods. The material in this chapter was published as a paper in 2021 [58].

• Chapter 8 presents a representation learning framework for datasets by treat-

ing a dataset as a point set. We propose different point set encoders to learn

dataset representations which can be used for dataset search.

• Chapter 9 summarizes the contributions of this dissertation and discusses the

future directions of dataset search.
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Chapter 2

Background

In this chapter, we first describe the current dataset search engines (Sec. 2.1). Then

we discuss how datasets can be obtained from the Web (Sec. 2.3). Next, we review

the tasks of dataset management (Sec. 2.4) and dataset search (Sec. 2.5).

2.1 Current Dataset Search Engines

Here we introduce the existing dataset search engines that are active and free to

users. Due to the heterogeneity of dataset modalities, the main difference among

dataset search engines are the types of indexed datasets. For different purposes, the

indexed datasets can be very different. We summarize the characteristics of different

dataset search engines in Table 2.1.

Similar to Web page search engines, Google Dataset Search1 returns a list of

Web pages containing a dataset. Since a Web page can link to datasets of any type,

Google Dataset Search can be considered as returning datasets of generic types.

This type of dataset search engine usually relies on metadata for ranking instead of

dataset content.

Scholarly search engines are designed for researchers who usually have expert-

level domain knowledge and a clear intent of what kind of datasets they are looking

1https://datasetsearch.research.google.com/
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Table 2.1: Different types of dataset search engines.

Dataset Search Engine Query Type Dataset Type User Upload

Google Dataset Search [34] Keywords Generic No
CKAN-based Data Portal [87] Keywords Generic Yes

Data.world [72] Keywords Generic Yes
GeoBlacklight-based Data Porta[62] Keywords Geospatial No

UCR STAR [95] Keywords Geospatial Yes
IEEEDataPort2 Keywords Academic Yes

PapersWithCode10 Keywords Academic Yes
Kaggle [63] Keywords Academic Yes
Delve [7] Keywords Academic No

DataLab [279] Keywords Academic No
Auctus [41] Table/Keywords Table No
Juneau [305] Table Table No

sameAs.org [10] URI URI No

for. For example, each dataset in IEEEDataPort2 is linked to a published paper and

has a single Digital Object Identifier (DOI). Compared with a generic dataset search

engine, the number of datasets indexed by scholarly search engines is usually smaller.

However, with an increasing number of published papers and datasets in recent

years, scholar dataset search becomes more and more important for researchers

to find high quality datasets for experiments. Different from other dataset search

engines, citation network analysis is a core component for building a scholar dataset

engine [7].

Some dataset search engines are designed for specific dataset types. Many

geospatial data portals (e.g., NYU Spatial Data Repository3) are build upon GeoBlack-

light [62], which is open-source software for building geospatial dataset search en-

gines. Each geospatial dataset is stored in specific format (e.g., Shapefile, KMZ and

GeoTIFF). Datasets indexed by Auctus4 [41] are in tabular format. Auctus also

provides functions like data augmentation. Given a query tabular dataset, it can

2https://ieee-dataport.org/
3https://geo.nyu.edu
4https://auctus.vida-nyu.org
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find relevant datasets that can be joinable or unionable. Semantic dataset search en-

gine sameAs.org [10] is designed for finding co-references between different datasets.

Given the URI of an entity, it returns co-references in other RDF datasets.

Among all those dataset search engines, keywords are the most important query

type since it is natural for users to represent information need. Even for semantic

dataset search engines, there are also methods supporting keyword search. However,

we find many semantic web search engines are no longer active and we do not list

them in Table 2.1. For the cases like Auctus and Juneau in which the query is a

dataset, sometimes we also call it dataset recommendation.

2.2 An End-to-end Perspective

In order to present an overview of a dataset search engine, we show an end-to-end

pipeline in Figure 2.1. We break down the whole pipeline into four different parts

by the lifecycle of datasets:

• Dataset acquisition (1-2 in Figure 2.1) refers to the identification or extraction

of datasets from the web.

• Dataset management (3 in Figure 2.1) provides infrastructures to store and

maintain datasets.

• Dataset search (4-6 in Figure 2.1) is the task of answering a search query by

returning a list of datasets. The query can be either a keyword query or a

dataset itself.

• Data-centric applications (6-8 in Figure 2.1) rely on the accessibility of a large

amount of datasets facilitated by services in dataset management and search.

We describe the details of every component in the rest of this chapter.
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Figure 2.1: Overall pipeline of a dataset search system.

Table 2.2: A list of dataset dumps available.

Dataset Data Type Source

Metadata of Datasets metadata Google Web Crawl [33]
TableArXiv table scientific documents [91]
WikiTables table Wikipedia [27]

AI-KG RDF scientific documents [76]

2.3 Dataset Acquisition

The process of dataset acquisition has a huge impact on the quality of datasets

and therefore is an important step for building any downstream data-focused task.

For traditional Web page search engines, a Web crawler [176, 120] is designed to

download Web pages starting from some seed URLs and then recursively download

more Web pages following hyperlinks. Algorithms like PageRank [193] are proposed

to determine the importance of Web pages so that the quality of indexed content

can be improved. Compared to crawling Web pages, crawling high-quality datasets

is much more challenging than crawling Web pages. A URI can be an identifier of

a Web page, while the identification of a dataset requires more effort.

Generally, existing dataset search engines have two ways to obtain datasets. The
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first way is asking dataset providers to upload their datasets associated with meta-

data in a predefined format. Open dataset portals are designed like this. The ad-

vantage is that dataset providers are able to maintain their datasets frequently. The

disadvantage is that there is no unified definition for dataset metadata. Schema.org

is one of the standards while other open standards for dataset metadata also exist

such as the W3C Data Catalog Vocabulary (DCAT)5. Certain communities can have

their own defined metadata standard. For example, GeoBlacklight uses OpenGe-

oMetadata schema which is designed specifically for geospatial resource discovery.

The second way is to adopt some strategies that allow a dataset search engine to

automatically crawl datasets from the Web, just like the Web page search engines.

The implementation of Google dataset search [34] is an example. On one hand, auto-

matic dataset acquisition methods (Sec. 2.3.2) can rely on modern machine learning

techniques so that the dataset search engines can scale to all potential datasets on

the Web. And less human curation is required to maintain the increasing number

of datasets. On the other hand, more complex dataset acquisition methods should

be designed so that the quality of datasets is reliable.

In general, there are two cases where a dataset is located:

1. Dataset Links: a dataset appears as a downloadable link which refers to the

real dataset file;

2. Embedded Datasets: a dataset is embedded in a document (e.g., in an

HTML file or a PDF file).

For dataset links, it may not be feasible for search engines to index and analyze

dataset files or dataset content according to our definition 1.1.1, because the target

dataset files can be in any format or even inaccessible in the worst case. However,

it will still be helpful for a user to find a Web page that potentially contains the

link to download a dataset for further review. The information appearing on the

same page can be saved as the metadata of that actual dataset file. For embedded

datasets such as Web tables, certain information extraction methods [93, 5, 300] can

be used to extract datasets and dataset content is directly accessed.

5https://www.w3.org/TR/vocab-dcat/
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Dataset acquisition is also an important topic in data management commu-

nity [92, 9] and machine learning community [224]. Unlike prior work discussing

how to acquire datasets used in the data integration process or how to use dataset

crowdsourcing methods for specific machine learning applications, we discuss dataset

acquisition from the perspective of a dataset search engine developer. In this section,

we discuss various methods that have already been used in existing dataset search

engines or can potentially be used in the future to acquire datasets for building an

open dataset search engine. Because different types of datasets are from different

sources, we categorize those methods by data types. We first talk about how to

make use of an existing search engine to crawl Web pages that contain datasets.

Then we discuss different methods about how to extract tabular datasets either

from the Web or documents. We summarize a list of available dataset dumps that

are ready to be indexed in Table 2.2.

2.3.1 Dataset-focused Crawling

Existing crawlers of Web page search engines can be helpful and adapted to crawl

datasets. Topic-focused crawlers [43, 78, 164, 186, 19, 260] and Web page classifica-

tion [97, 116, 3, 229, 210] have been studied to effectively narrow down the crawling

boundary and process links focused on specific topics. WEBTABLES [36] and OC-

TOPUS [35] simply rely on an existing search engine to obtain the candidate Web

pages and then those without tabular datasets are filtered. TableSeer [151] crawls

the web pages using a depth-first crawling policy with a maximum depth of five from

the seed URLs. A classifier is used to determine whether a document contains tables

or not. Documents with tables are further processed so that tables and metadata

such as page title, table caption and table headers are indexed.

More recently, Zhang et al. [295] propose a domain-specific dataset discovery

system (DSDD) where given a user keyword query, a list of potential Web pages

containing at least one dataset link are returned. DSDD first discovers dataset

repository entry pages (DREP). Based on a search engine, it mimics a user’s dataset

discovery process and schedules a list of predefined actions (including keyword search
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and related pages search using a search engine, forward and backward crawling) until

a certain number of pages are analyzed. An online algorithm based on multi-armed

bandits [12] is trained to select the best action that maximizes the harvest rate

and coverage of DREP. For each crawled Web page, a SVM classifier trained with

TF-IDF features is used to classify whether the Web page is a DREP or not. To

further increase the accuracy of crawling results, a verification step is performed if

a page is classified as a DREP. Starting from the candidate entry page, it crawls

all subsequent pages within three hops. For each page, regular expressions are used

to check for URLs that link to dataset files. After a DREP page is verified, DSDD

further crawls dataset pages (DP) that points to dataset files (e.g., CSV, TSV,

JSON, ZIP).

The identification of datasets can be easier when Web developers provide meta-

data information in the source code following certain specifications6. Google Dataset

Search [34] relies on Google Web crawling which processes structured data markup

and generates triples for each page. Specifically, all the pages containing the fol-

lowing types of elements can be identified as pages containing datasets: http:

//schema.org/Dataset, http://schema.org/DataCatalog, and http://www.w3.

org/ns/dcat#Dataset. Based on the standard and structured data markup, the

metadata of datasets are directly crawled. Those raw metadata are further cleaned

and indexed by Google’s Dataset Search Engine. An obvious defect of this approach

is that the coverage of embedded metadata matters since those Websites without

those markup cannot be discovered. According to Benjelloun [23], about 500k Web

pages included dataset markup and half of them were from the US Open Govern-

ment portal. But until March 2020, there are about 28 million datasets from more

than 3,700 sites. The increasing number indicates the huge impact of using semantic

markup in the future.

6https://developers.google.com/search/docs/advanced/structured-data/dataset
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2.3.2 Acquisition of Tabular Datasets

Tables are datasets organized in a structured format. Many modern software ap-

plications provide versatile functions to work with tabular datasets (e.g., Microsoft

Excel). Tabular datasets can be easily transformed into RDF datasets which are

widely used in the semantic web. Ding et al. [79] show that tabular datasets from

Data.gov can be converted into RDF triples and then linked to different data sources

like the Linked Open Data Cloud (e.g., DBpedia), conventional web (e.g., New York

Times), and their own provenance annotations. Methods of table extraction from

the Web are important approaches to dataset acquisition, since tabular datasets are

the most used type of datasets in the world and can be easily converted into other

formats.

Web Table Extraction

The Web contains a large number of datasets which are embedded as HTML source

codes. On the top right-hand corner of many Wikipedia pages, there is a infobox

which presents the summarized facts of that page formatted in a table. Such tabular

datasets are very useful for downstream applications such as knowledge base con-

struction [197, 162, 31, 2] and question answering [115, 1, 171]. Web tables in general

can have complex layout structures for different purposes [269, 37, 65, 134, 53, 139].

The <table> tag is frequently used to display information facilitating better visual

effect. It is also used to organize a list of facts such as Wikipedia infoboxes. Tables

which include rich information about entities and their attributes are also called

relational tables. Extracted relational tables can be transformed/normalized into

a consistent format. The core-column [138, 299, 27, 259] which refers to a special

column that includes important entities is usually detected by algorithms [32]. A

normalized table is a set of cells arranged in rows and columns like a matrix. Each

cell could contain a single word, a real number, a phrase or even sentences. The first

row of a table is the header row (can be empty) and consists of header cells. The

table itself is the dataset content of tabular data. The metadata of a table usually

includes the caption of the table, the title of the Web page containing the table.
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Sometimes the the table headers are also considered as metadata. A relational table

can also be transformed into semantic triples in the form of < p, s, o >, where p is

a predicate, s is the subject and o is its object [65, 79].

Early work [48, 288] proposes different rule-based algorithms to detect Web ta-

bles for a small set of data or domain-specific tables. Wang et al. [269, 270] explore

various features reflecting the layout and content characteristics of tables. Simple

machine learning methods such as naive Bayes model and KNN show good perfor-

mance on Web tables from multiple domains. As the first stage of the WEBTABLES

project, Cafarella et al. [37] extracted 14.1 billion Web tables from Google’s Web

crawl and about 154 million of them are high-quality relational tables. They first

wrote a list of filters to remove non-relational tables and then employed a similar

method to Wang et al. [270] to further classify non-relational tables and table head-

ers. Crestan and Pantel [65] propose a fine-grained taxonomy instead of a binary

classification of table types. They further propose several groups of features for

table type classification: the global layout features account for the structure of the

table as a whole; layout features and content features are generated over rows and

columns. A Gradient Boosted Decision Tree (GBDT) [88] is trained to classify a

Web table into one class in the fine-grained taxonomy. For different types of tables,

the position of core-columns are different. Lautert et al. [134] extends the taxonomy

defined in Crestan et al. [65]. Five additional features are proposed which are posi-

tion of inner HTML tables and ratio of cells containing unordered lists, ordered lists,

commas and brackets. They use a Multilayer Perceptron Network with 1 hidden

layer as the table type classifier.

Data Extraction from Documents

Documents, especially scientific articles, are also important source for extracting

datasets. Current scholarly search engines such as Google Scholar7, CiteSeerX8 and

Semantic Scholar9 support full-text ranking to find relevant documents given a user

7https://scholar.google.com/
8http://citeseerx.ist.psu.edu
9https://www.semanticscholar.org/
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query. With an increasing number of publications each year, full-text search can be

less useful when people have a more specific information need. For example, an NLP

researcher may want to find the most recent publications on a specific dataset/task

and rank them by their performance instead of relevance to a simple keyword query.

PapersWithCode10 provides similar services to facilitate the growth of the machine

learning community. In the following, we discuss two types of data that can be

extracted from documents to support future dataset search engines.

Tables in scientific articles are explicit datasets like Web tables which summa-

rize important research results in a compact way. Table detection and recognition

in PDF files or images is also a well-studied research direction [75, 212, 282]. There

are usually two steps towards obtaining tabular datasets from docoments: (1) iden-

tifying the region in a document that encloses the table; (2) extracting the struc-

tural information like rows and columns from the table. Many open-source tools

are available for table extraction from documents such as Camelot11, Tabula12 and

PDFPlumber13. TableSeer [152], a search engine for tables, proposes its own algo-

rithm of extracting tables associated with metadata from scientific articles. Gao

et al. [91] construct TableArXiv14, which is a collection of scientific tables. They

used a snapshot of arXiv15 containing 854,989 papers. A LaTex processing tool

LaTeXML [238] is used to convert papers’ LATEXsource files to an XML format,

which are further used to extract tables. In total, they extracted 341,573 tables

from papers in Physics-related domains.

Implicit datasets can also be extracted from documents. With the help of infor-

mation extraction techniques, structured data can be extracted from unstructured

text. For example, the task of extracting useful tuples from publications have gained

more and more attention in recent years. Such data can be helpful for tracking the

progress of different research communities. Luan et al. [155] propose a multitask

10https://paperswithcode.com
11https://github.com/camelot-dev/camelot
12https://github.com/chezou/tabula-py
13https://github.com/jsvine/pdfplumber
14http://boston.lti.cs.cmu.edu/eager/table-arxiv/
15http://arXiv.org
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framework SCIIE to identify and classify scientific entities, relations, and coreference

resolution across sentences. Hou et al. [104, 105] propose a framework TDMS-IE

aiming at extracting <Task, Dataset, Metric Name, Metric Score> tuples from NLP

papers. The tuples can be used to automatically build NLP leaderboards. With

similar purpose, Kardas et al. [118] propose AxCell to extract results of papers. The

results of AxCell is used by the leaderboards on the PapersWithCode platform. Wu

et al. [278] propose a new way of information extraction which adopts a seq2seq

approach to transform text into tables. Practically, the extracted tuple targets can

be different depending on specific applications. Different ontologies [76, 56] have

been proposed which define various entity types and relation types. The resulting

tuples can be transformed into RDF triples and queried via a SPARQL endpoint.

2.4 Dataset Management

After obtaining the datasets, a management system is required to index and store

them. More advanced tasks such dataset profiling are important to enable effective

downstream tasks such as dataset search and recommendation. In this section, we

specifically discuss about dataset profiling and dataset quality control. We show a

list of open source tools for dataset management in Table 2.3.

2.4.1 Dataset Profiling

Dataset profiling has been studied by the Semantic Web community [4, 20] for

decades. However, we do not limit the scope of discussion to only RDF datasets.

Prior works on RDF dataset profiling are instructive for profiling general datasets,

especially for datasets that can be converted into RDF triples. Therefore, the meth-

ods discussed here can be generalized to datasets of any format that have a tabular

correspondent. Here we give the definition of dataset profiling:

Definition 2.4.1 (Dataset Profiling). Dataset profiling is a process of analyzing

the raw datasets and generating additional information about the original datasets.
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Table 2.3: A list of opensource tools for dataset management.

Management Tool Data Type URL

OpenClean [173] Table https://github.com/VIDA-NYU/openclean

Auctus [41] Table https://github.com/VIDA-NYU/auctus

DDT [130] Table https://github.com/VIDA-NYU/domain_discovery_tool

DataHub Metadata https://github.com/linkedin/datahub

DATALAB [279] Scholar https://github.com/ExpressAI/DataLab

Pytheas [60] Table https://github.com/cchristodoulaki/Pytheas

Valentine [127] Table https://github.com/delftdata/valentine

DataTypes [255] Table https://github.com/ivaleraM/DataTypes

Duke [15] Table https://github.com/NewKnowledge/duke

Sherlock [109] Table https://github.com/mitmedialab/sherlock-project

D4 [190] Table https://github.com/VIDA-NYU/domain_discovery_tool

Sato [294] Table https://github.com/megagonlabs/sato

Juneau [305] Table https://github.com/juneau-project/juneau

Doduo [239] Table https://github.com/megagonlabs/doduo

Basic dataset profiling features that can be directly calculated from datasets in-

clude the maximum/minimum values and the number of values or distinct values

of a column [41]. Castelo et al. [41] use K-Means clustering algorithm to calculate

dataset summaries where the ranges of their corresponding attributes are repre-

sented. Such profiling results are also used in result presentation of some dataset

search engines. In the following, we introduce more advanced profiling tasks that

require explicit modeling with machine learning methods.

2.4.2 Attribute Annotation

The headers of tabular datasets sometimes are also called dataset attributes. How-

ever, many datasets have incomplete information and headers can be missed. There

are two types of profiling tasks that can provide additional information about dataset

attributes. The first one is statistical type annotation which discovers the sta-

tistical data types (e.g., ordinal, categorical or real-valued). Valera et al. [255]

propose a Bayesian method to solve this problem by exploiting the latent structure

in the data. They distinguish among real-valued, positive real-valued and interval

data as types of continuous variables, and among categorical, ordinal and count

19

https://github.com/VIDA-NYU/openclean
https://github.com/VIDA-NYU/auctus
https://github.com/VIDA-NYU/domain_discovery_tool
https://github.com/linkedin/datahub
https://github.com/ExpressAI/DataLab
https://github.com/cchristodoulaki/Pytheas
https://github.com/delftdata/valentine
https://github.com/ivaleraM/DataTypes
https://github.com/NewKnowledge/duke
https://github.com/mitmedialab/sherlock-project
https://github.com/VIDA-NYU/domain_discovery_tool
https://github.com/megagonlabs/sato
https://github.com/juneau-project/juneau
https://github.com/megagonlabs/doduo


data as types of discrete variables. Ptype [42] uses Probabilistic finite-state ma-

chines (PFSM) that can generate values from the corresponding domains. Then

given a column of data values, the column type can be inferred. Bonfitto et al. [29]

infer the types of columns in CSV tables by exploiting a decision tree to do multi-

label classification.

Beyond annotating columns with simple data types like integer, string, date, and

float, semantic type annotation aims at annotating columns with meaningful

concepts either from a knowledge base (e.g., DBpedia classes) or datasets them-

selves. WEBTABLES [36] can finds potential synonyms of a given table header

from corpus-wide statistics on co-occurrences of table attributes. Limaye et al. [147]

model the table annotation problem using a number of interrelated random vari-

ables and propose a probabilistic graphical model to annotate one or more types

for a table column. Barcelos [64] builds a regression model to rank candidate an-

notations. Given a target column, columns with overlapping values are retrieved

as candidates. Two group of features are used to fit the regression model. The

first group calculates Jaccard similarity between values of two columns. The second

group calculates the Jaccard similarity of other attribute names. ColNet [49] adopts

Convolutional Neural Networks (CNNs) to embed the overall semantics of a column

into a single vector which captures both inter-cell and intra-cell locality features.

Ota et al. [190] derive robust context signatures of columns from a large number of

datasets. A column-based clustering approach is used to find attribute candidates

belonging to the same domain. Manually curated features capturing various statis-

tics of columns are used to fit a random forest for attribute prediction in [54, 287].

Sherlock [109] additionally obtains two types of embedding features for columns.

The first one is obtained by calculating the mean, mode, median and variance of

GloVe embeddings [198] across all values in a column. The second one is considering

a column as a paragraph and training paragraph vectors [135] for columns. Then

both statistical features and embeddings features, which capture character-level,

word-level and column-level signals, are used to train a neural network for seman-

tic type annotation. Zhang et al. [294] uses Sherlock [109] as the single-column

20



prediction model and explores structured learning to perform multi-column predic-

tion, where table-wise context and column-wise context are used. More recently,

pre-trained models have been used for semantic type annotation. Deng et al. [74]

propose a Transformer-based framework TURL to model the row-column structure

of relational tables. Similar to masked language modeling used in BERT [77], they

propose a pre-training task to recover the masked entity cells. TURL can be used

as a feature extractor of columns for the semantic type prediction task. Trabelsi et

al. [248] adopt BERT to generate headers sequentially for a table so that the context

information is considered. Suhara et al. [239] serialize a table into a sequence and

use BERT to extract column-wise features and column-pair features. Then a multi-

task framework is utilized to solve semantic type annotation and column relation

prediction simultaneously. In Chapter 4, we introduce our feature-based method for

column attribution annotation in details.

2.4.3 Entity linking

Datasets may have potential entity mentions (e.g., persons, locations, etc.) that

can be linked to knowledge bases (KBs). Uncovering or extending such semantics

of datasets could be helpful for tasks like dataset retrieval, table-based question

answering and dataset augmentation. Usually there are two steps in entity linking

from a dataset: (1) a list of candidate entities are retrieved; and, (2) an entity

disambiguation module is used to rank and select the matched entity. For candidates

retrieval, an existing Wikidata lookup service can be used as in [27, 219, 83].

The probabilistic graphical model proposed by Limaye et al. [147] can not only

annotate table attributes, but also annotate table cells with entities defined in knowl-

edge bases. TabEL [27] assumes that entities in a given row or column tend to be

related and utilize a collective classification technique to encourage disambiguation

of mentions in the same row or column to be related to one another. The dis-

ambiguations in a given table are optimized jointly in order to obtain a globally

coherent set of entities. Wu et al. [277] propose to link entities with multiple linked

KBs. First, they use a graph-based algorithm to link entities from each single KB.
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Then several heuristics are presented to leverage “sameAs” relations between en-

tities from different KBs to improve the entity linking results from previous step.

Ibrahim et al. [111] give specific consideration to quantities and distinguish between

numerical mentions and string mentions. They build a new knowledge base QKB

for quantities. A quantity is a triple <measure, value, unit> where measure refers

to a certain quantifiable aspect of an object or process (e.g., height, revenue), value

is a numerical literal and unit represents the magnitude of a quantity. TURL [74]

treats each cell of a table as a potential entity. The representation of a candidate en-

tity retrieved from Wikidata Lookup service is calculated from TURL’s Transformer

encoder using its name, description and type. A similarity function is fine-tuned

with cross-entropy loss to predict the matching score between the cell and candidate

entity.

2.4.4 Vectorization

Vector representations for documents have been studied for text understanding.

From early Bag of Words (BOW) representations [228] to recent dense representa-

tions learned from neural networks [50, 119, 293, 280, 292], vectorization of docu-

ments is important for retrieval tasks. The indexed vectors are efficient for search

engines to compute their similarity or relevance to a query. Here, we also consider

dataset vectorization as a profiling task according to Definition 2.4.1. A dataset

management system can learn vector representations for datasets offline which can

support downstream tasks such as dataset retrieval.

The same vectorization techniques for text documents can also be used for

datasets. DataLab [279] encodes the descriptions of datasets with BERT and the

embeddings of [CLS] tokens are treated as vector representations of datasets. Some

vectorization methods are proposed specifically for tabular datasets. Inspired by

the Word2Vec approach [167], Table2vec [296] trains four types of table embeddings

based on the co-occurrences of different table elements. The first considers all words

appearing in a table and its metadata fields (e.g., page title, caption, etc.). The sec-

ond only considers table headers and each header is treated as a single term. The
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third considers entities appearing in the core-column and the last one considers all

entities from table cells. Cappuzzo et al. [38] formulate dataset embeddings learning

as a graph embeddings generation problem. First, they transform a dataset into a

compact tripartite graph with three types of nodes. Token nodes represent each

token appeared in the dataset. Record Id nodes (RIDS) represent a tuple in the

dataset. Column Id nodes (CIDs) represent attributes of the dataset. Edges are

constructed based on the structural relationships in the datasets. Random walks

are used to generate sentences from the constructed heterogeneous graph. Then

embedding training algorithms such as Word2Vec can be used to train vector repre-

sentations for each node in the graph. For methods proposed in [296, 38], a dataset

is vectorized into a list of embeddings of dataset elements. Those embeddings can

be indexed as dataset features to train more complex representation learning models

in downstream tasks. Or simple strategies such as averaging can be used to derive

a single representation for each dataset.

2.4.5 Quality Control

The quality of datasets varies due to many reasons. A five-star scheme for grading

the quality of linked data was proposed by Tim Berners-Lee [25]:

• One Star: available on the Web (with an open licence) to be Open Data;

• Two Star: available as machine-readable structured data (e.g., excel instead

of image scan of a table);

• Three Star: as Two Star plus non-proprietary format (e.g., CSV instead of

excel);

• Four Star: all the above plus, use open standards from W3C (RDF and

SPARQL) to identify things, so that people can point at your stuff;

• Five Star: all the above plus, link the dataset to other people’s datasets to

provide context.
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The standards can be adapted a little bit to measure quality of datasets in other

formats. For a Four Star dataset, instead of requiring it to use open standards to

identify things, we can expect the dataset is described with open standard meta-

data definitions (e.g., Schema.org) so that those datasets can be easily discovered

and accurately interpreted by dataset search engines. However, there are different

metadata definitions and there is still a long way to go before all the datasets can

be described with a unified metadata definition.

Metadata is documentation of datasets. The machine learning community has

proposed different standards to document datasets. Gebru et al. [94] propose datasheets

for datasets in order to facilitate better communication between dataset providers

and consumers. They provide a template which contains a list of questions about

the dataset creation, maintenance, and distribution process. Pushkarna et al. [203]

propose Data Cards for datasets which summarize essential facts about datasets

such as upstream sources, data collection and annotation methods, training and

evaluation methods, intended use, factors that can affect a model’s performance

and so on. Domain specific metadata standards have also been proposed. For ex-

ample, Healthsheet [225] is adapted from Gebru et al. [94] to document healthcare

datasets (e.g., electronic health records (EHR), clinical trial study data, etc.).

There are also post-processing techniques for dataset quality control. For exam-

ple, traditional data cleaning tools can be used [180, 211, 117, 246, 217, 8, 173]

to detect errors or repair data in dataset content. Pytheas [60] provides func-

tions to normalize CSV tables. Google dataset search [34] performs a number of

operations to clean metadata of datasets. First, they notice that the usage of

Schema.org properties has different patterns. So for important properties, they

write adapters to normalize them into the same pattern. They also construct a

knowledge graph from dataset metadata where important entities such as organiza-

tions are connected. The crawled datasets from the same or different websites can

include many duplicates or replicas. One solution to identify duplicates and replicas

is through http://schema.org/sameAs if specified explicitly by Web developers.

Some heuristics can also be helpful. For example, if two datasets shares a large part

of their metadata or point to the same download URL. A graph-based solution is
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also proposed in Brickley et al. [34] to identify duplicates and replicas at scale. For

each dataset, they compute a hash value (fingerprint) for dataset title, description

and URL, respectively. Then a graph can be constructed where nodes represent

datasets and an edge connects two datasets if they share at least one fingerprint.

A MapReduce version of a connected-component algorithm [213] is used to identify

connected components. Each connected component is a cluster of duplicates if the

datasets are from the same site, or replicas, if they are from different sites.

2.5 Dataset Search

Dataset search is inherently an information seeking procedure which has been stud-

ied by different research communities for a long time. For example, building retrieval

models to search over RDF datasets [85, 102, 11] is an important task in the se-

mantic web community and document search [222, 251, 252] has been extensively

studied by the information retrieval community. We have the following definition

for dataset search:

Definition 2.5.1 (Dataset Search). Given a query q, the goal of dataset search is

to rank a set of datasets D = {D1, D2, ..., Dn} in descending order of their relevance

scores with respect to q.

Prior work in dataset search mainly answers a user query by retrieving only one

type of dataset. For example, the majority of current dataset search engines listed

in Table 2.1 return datasets in specific format. Though the Google Dataset Search

returns datasets of any type, only the text description in metadata is analyzed.

It is an extremely difficult task to build an universal dataset search engine that

can handle all different modalities. Therefore, we discuss different types of dataset

search by the type of query or the dataset’s modality.

2.5.1 Search by Metadata

Metadata Matching. Current dataset search engines mainly rely on metadata

to match user queries. For example, the Google Dataset Search Engine [34] indexes
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only metadata extracted from Web pages that employ dataset markup defined by

Schema.org. Given a user query, the same methods used in the Google Web search

engine are applied to search datasets. Since each metadata comes from a certain

Web page, the task of dataset search is converted to traditional Web page search.

Similarly, all dataset search engines implemented based on CKAN [87] use Apache

Solr16 to support the dataset search functions. A user query is matched against one

or more metadata fields with text matching methods.

DataLab [279] is a data-oriented platform mainly designed for NLP researchers.

The datasets are also searched using metadata. Instead of encoding dataset content,

they use BERT [77] to encode the descriptions of datasets extracted from papers

to obtain dataset representations. When the system receives a user query, BERT

is also used to obtain the query representation so that dataset representations and

query representations are in the same semantic space. Then datasets can be ranked

by approximate nearest neighbor search in the semantic space.

Dataset Navigation. In some literature such as Nargesian et al. [177] and Ouel-

lette et al. [191], there is no explicit keyword query from a user. Instead, they assume

a user directly navigates the metadata of datasets organized in certain structure to

help users find a targeted dataset. Nargesian et al. [177] extract attributes including

keywords, concepts and entities from metadata. Then they construct an organiza-

tion for datasets where a node represents an attribute of a datasets and each dataset

can be associated with one or more attributes. Their goal is to construct an orga-

nization for datasets so that the expected probability of discovering datasets are

maximized. Through a user study, they find that the navigation approach can help

users find datasets that are more diverse than keyword search and 42% preferred the

use of navigation over keyword search. An interesting observation is that there is

only about 5% intersection between datasets found using navigation approach and

keyword search, which indicates that the two types of dataset search method can

be complementary to each other.

16https://solr.apache.org/
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Discussion. Searching datasets through metadata is the first trial of dataset

search, because many existing Web search techniques can be directly applied. How-

ever, there are also some limitations. First, a metadata-oriented ranking strategy

can cause problems when the metadata of a dataset is incomplete or of poor quality.

Second, those frameworks do not support the indexing of dataset content, which

could lead to inefficient matching between query terms and dataset content (in text

format). Third, there is no unified schema for dataset metadata. Schema.org is

widely used by search engines while other open standards for dataset metadata also

exist such as the W3C Data Catalog Vocabulary (DCAT)17. Therefore, an ideal

Web-scale dataset search engine should be able to rank datasets from heterogeneous

resources. Empowering a dataset search engine with the ability to analyze dataset

content could be challenging but useful.In the remaining subsections, we discuss the

search techniques that utilize different dataset content.

2.5.2 Tabular Dataset Search

Tabular dataset search aims to find relevant datasets whose data contents are in table

format. According to Benjelloun et al. [23], datasets in tabular format (e.g., in CSV

or XLS format) are the most common type of data (37%) and structured datasets

(e.g., in JSON or XML format) are the second most common (30%). Any other

type of datasets such as images and text are no more than 5%. As we mentioned in

Section 2.3, datasets in tabular format and other structured format can be converted

into each other, which represent more than half of discoverable datasets without

considering there are a large number of datasets that can be extracted from the

Web.

Unsupervised Methods. Under the setting of unsupervised learning, annotated

relevance scores of query-table pairs are not used for model training. TableR-

ank [151] uses a modified version of a vector space model TF-IDF [228] to represent

a user query and a table. The relevance of a table given a query is scored by the

17https://www.w3.org/TR/vocab-dcat/
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cosine similarity function. Cafarella et al. [36] propose the WEBTABLES system

which allows users to search tables with a keyword query as the input. The table

ranking strategy is implemented on top of an existing search engine and returns

the top-k extracted tables from the results. OCTOPUS [35] is an extended version

of WEBTABLES. It first utilizes a commercial search engine to obtain a list of

candidate tables and then reranks the tables with SCPRank algorithm. SCPRank

measures the correlation between a query q and a table cell c with the following

equations:

scp(q, c) =
p(q, c)2

p(q)p(c)
(2.1)

p(q, c) =
number of web pages contain both q and c

total number of web pages
(2.2)

p(c) =
number of web pages contain c

total number of web pages
(2.3)

where p(q) is defined in a similar way. Given a user query q and a table of n columns,

Equation 2.1 is used to score each column independently by summing the scp scores

of all cells of a column. Then the final ranking score of a table is the maximum of

all of its per-column scores.

Both WEBTABLES and OCTOPUS rely on an existing search engine to obtain

the table ranking results, which means a table along with the context information

is treated as an ordinary document. Therefore, any information retrieval method

can be applied to tabular dataset search. Zhang et al. [299] propose single-field

document ranking where a flattened table and its context fields are concatenated.

Then traditional methods such as BM25 or language models can be used to score a

query-table pair. Instead of collapsing all fields into a single field, they also propose

multi-field document ranking where each field is scored independently and then

scores of different fields are aggregated into the final ranking score:

score(q, T ) =
∑
i

wi × score(q, fi) (2.4)
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where wi is the weight of field i, fi is the text representation of field i, score is

the scoring function such as BM25 or language models. Gao et al. [91] propose a

probabilistic framework to retrieve scientific tables extracted from research publica-

tions. They first build a structured query from an unstructured query by extracting

target quantity types and key concepts from an external knowledge base such as

Wikipedia. A table is represented as a structured object that has multiple fields

or representations. In the probabilistic framework, they assume different parts of

the query are conditionally-independent representations which are matched with

differing weights to different parts of the table to make use of all of the evidence

available.

Mismatch between a user query and a tabular dataset is one of the challenges in

dataset search. For example, a user could search for the locations of Point-of-Interest

in New York City with a query “NYC POI locations”. A target dataset could include

a table with a header named “Locs” which is the abbreviation of “locations”. Such

abbreviations appear frequently in datasets. In order to relieve this situation, we

propose a method in Chapter 4 to generate alternative table headers so that the table

headers, which usually are important concepts, have a higher chance to be matched

with user queries. Manually curated features from a column are extracted and the

alternative header generation is formulated as a multi-class classification problem.

We further propose to rank a dataset by considering its metadata, dataset content

and augmented metadata in Chapter 5. More than the features used in Chapter 4,

we also use CoFactor method [146] to learn latent features from the co-occurrence

relationships of table headers. After generating alternative table headers, we use

BM25 to score original table headers, table content and generated table headers,

respectively. Then those scores are summed up as the final ranking score for a

tabular dataset.

Supervised Methods. In contrast to unsupervised setting, supervised table search

methods require annotated relevance scores of query-table pairs during the train-

ing phase. Cafarella et al. [36] propose featureRank which uses the table-specific

features (features 1-8 in Table 2.4) to score each table and does not rely on an
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Table 2.4: Features proposed by Cafarella et al. [36].

ID Description Dim.
1 number of rows 1
2 number of columns 1
3 has header or not 1
4 document-search rank of source page 1
5 number of hits on header 1
6 number of hits on second-to-leftmost column 1
7 number of hits on leftmost column 1
8 number of hits on table body 1
9 schema coherency score 1

existing search engine. A linear regression model is trained to fit the proposed fea-

tures. They further propose schemaRank which includes schema coherency score

(feature 9 in Table 2.4) as an additional feature. The coherency score measures

how well attributes of a schema (table headers) fit together. Given the table header

H = {h1, ..., hn} of table T , its schema coherency score is calculated as:

cohere(T ) =

∑
h1∈H,h2∈H,h1 ̸=h2 PMI(h1, h2)

|R| ∗ (|R| − 1)
(2.5)

PMI(h1, h2) = log(
p(h1, h2)

p(h1)p(h2)
) (2.6)

where the definitions of p(h1, h2),p(h1) and p(h2) are similar to Equation 2.2 and

2.3. Pointwise Mutual Information (PMI) is often used in computational linguistics

and measures how strongly two items are related. The score will be large and

positive when two variables strongly indicate each other, zero when two variables are

completely independent, and negative when variables are negatively-correlated. The

coherency score is the average of all possible header-pairwise PMI scores and rewards

tables with highly-correlated attributes. Similar to featureRank, schemaRank fits a

linear regression model with the proposed features (1-9 in Table 2.4).

Zhang et al. [299] propose a Learning-To-Rank (LTR) approach which extends

the features in Table 2.4 with more table structure and lexical features listed in
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Table 2.5: Features proposed by Zhang et al. [299]

ID Description Dim.
10 Number of query terms 1
11 Sum of query IDF scores in field f number of fields
12 The number of empty table cells 1

13
Number of in-links to the page
embedding the table

1

14
Number of out-links from the page
embedding the table

1

15 Number of page views 1
16 Inverse of number of tables on the page 1
17 Ratio of table size to page size 1

18
Ratio of the number of query tokens
found in page title to total number of tokens

1

19
Ratio of the number of query tokens
found in table title to total number of tokens

1

20
Rank of the table’s Wikipedia page
in Web search engine results for the query

1

21
Language modeling score between query
and multi-field document repr. of the table

1

Table 2.5. Note that feature 21 is obtained from Equation 2.4. A random forest

is used to fit the ranking features in a pointwise manner. In order to go beyond

lexical matching, they further propose a Semantic-Table-Retrieval (STR) approach

which represents both queries and tables in a semantic space, and then measure the

similarity of those vector representations. First, a table (or query) is mapped into

4 different vector representations:

• Bag-of-Entities: To obtain the bag-of-entities representation for a query, the

query is issued against the DBpedia knowledge base to retrieve top 10 entities.

While for a table, its caption and page title are used as the query to retrieve

entities, respectively. If a table has a core column, the linked entities in that

column are also added into the bag-of-entities representation of a table.

31



• Bag-of-Categories: Since each entity in a bag-of-entities representation has

a corresponding Wikipedia category, the bag-of-categories representation for

a query (or table) can also be obtained.

• Word Embeddings: Each word in a query (or table) is mapped to a pre-

trained word embedding (e.g., word2vec with 300 dimensions, trained on

Google News.)

• Graph Embeddings: Each entity in a query (or table) bag-of-entities rep-

resentation is mapped to a pretrained graph embedding (e.g., RDF2vec [218]

with 200 dimensions, trained on DBpedia 2015-10).

For each type of the four semantic spaces, there are four similarity measures

(listed in Table 2.6) to calculate the similarity score for a query-table pair, which

result in 4 × 4 = 16 semantic features. Along with all other features proposed in

Table 2.4 and Table 2.5, a random forest is trained in a pointwise manner. Tables

are also represented as graphs by Trabelsi et al. [250] in which a knowledge graph

representation indicates the relations between entities. R-GCN [230] is applied on

knowledge graphs to learn representations for graph nodes and relations.

In Chapter 6, we propose a method based on the pretrained language model

BERT [77] for tabular dataset search. We first slice a table into rows, columns

or cells. A content selector is designed to choose the most significant pieces as

BERT input. BERT can be used as a feature extractor and trained jointly with

previously designed features [299] to achieve significant improvement. A graph-

based approach is proposed in Chapter 7. We first construct word co-occurrence

graphs for metadata and data content separately. Then graph neural networks are

used to learn the embeddings of nodes, which are further transformed into query

representations and table representations. A graph-based prediction is obtained

from node embeddings and a text-based prediction is obtained from prior methods

focusing on text matching [69, 57]. Two predictions are combined to produce the

final ranking scores. We find that the graph-based prediction can further improve

the performance of state-of-the-art text matching method. Moreover, graph-based
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matching methods are more robust when some metadata information is incomplete.

Table 2.6: Similarity measures.

Measure Equation

Early cos(C⃗q, C⃗T )

Late-max max({cos(q⃗i, t⃗j}), q⃗i ∈ C⃗q, t⃗j ∈ C⃗T

Late-sum sum({cos(q⃗i, t⃗j}), q⃗i ∈ C⃗q, t⃗j ∈ C⃗T

Late-avg avg({cos(q⃗i, t⃗j}), q⃗i ∈ C⃗q, t⃗j ∈ C⃗T

2.5.3 Search by Example

The queries used for metadata search and tabular dataset search are keyword queries,

which are constructed by users and represent their information needs. An alternative

way to represent a user’s information need is by providing an example dataset, so

that a dataset search engine can find related datasets. We call this task dataset

recommendation or search by example.

Metadata-based Search. Indexed metadata fields provide informative signals

for dataset search engines since metadata is expected to describe a dataset. Datasets

can have different modalities for their dataset content but metadata is in text and

it allows us to use existing text matching methods for dataset recommendation. For

example, the title of a dataset can be used as a keyword query to match titles of

other datasets. Datasets that are owned by the same provider or have the same

hashtag can also be recommended18. DataLab [279] obtains vector representations

of datasets from their text descriptions extracted from research papers and dataset

recommendation scores are calculated from vector similarities.

Table-based Search. Metadata-based search is modality-agnostic since dataset

content is not used and its modality does not matter. The query of table-based

18data.world
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search is a table. As mentioned by Zhang et al. [300], table-based search serves as

an intermediate step for many downstream applications such as data completion

and table augmentation. In fact, dataset search in general can be useful for various

downstream applications.

One line of approach to table-based search focuses on table similarity prediction.

Zhang et al. [301] use the method in Zhang et al. [299] to map a table into different

semantic spaces. Then multiple similarity scores between a pair of table can be

calculated based on Table 2.6. A random forest is used to map those similarity scores

into a final table matching score. TabSim [100] learns the semantic representation

of a tabular dataset from its caption and tabular content. A Bi-LSTM [231] is used

to learn caption representation and a newly designed layout-aware network is used

to learn tabular content representation. Then two representations are concatenated

as the tabular dataset representation. The relatedness between a query table and a

candidate table is measured by a Siamese neural network.

Another line of approach finds relevant tables that are joinable or unionable with

the query table. Just like the join and union operation in database, those table-

based methods can expand a query table with more columns or rows. The Mannheim

Search Join Engine [140] provides a join operator so that additional attributes can

be added to a user-provided query table. They first find candidate tables where at

least one matching header of the query table is found. At the token level, they query

a Lucene index to retrieve tables where at least one token in the headers matches the

tokens in the query table’s headers. An alternative way is to use a fuzzy matching

function [262] to calculate the similarity between a query header and the matched

candidate table header. Then the final matching score is computed as the average

similarity between the matched headers from the query table and the candidate

table.

Nargesian et al. [178] propose to solve the table union search problem which

is to find target tables that have the highest likelihood of being unionable with a

query table on some subset of attributes/headers. For three types of unionability,

different statistical tests are designed to determine how likely a hypothesis that two

attributes are unionable is to be true. The first type, named set unionability, uses
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the size of value overlap between two columns. The second type, called seman-

tic unionability, assumes the headers appear in an ontology so that the semantic

similarity between two headers can be estimated more accurately. The third type,

which is natural-language unionability, assumes the values of attributes are part of

a natural language. For this case, word embeddings pretrained on Wikipedia are

used to learn representations for both attributes and values so that the likelihood of

two attributes are unionable can be further estimated. The matching score between

a query table and a candidate is determined by the maximum attribute unionability

score.

Google Fusion Tables [71] define a related table which is either an entity comple-

ment or a schema complement of the query table. A higher entity complement score

indicates that the candidate table is more likely to be unionable and a higher schema

complement score indicates the candidate table is more likely to be unionable. En-

tity complement score is the product of entity consistency score and expansion score.

The entity consistency score measures the relatedness of entity sets in the query ta-

ble and a candidate table. The relatedness of a pair of entities is calculated by

the dot product of their entity representations which are vectorized labels obtained

from external resources. And the entity consistency score between two tables are

aggregated (e.g., averaging or summation) from pairwise entity relatedness scores.

The expansion score measures the attribute similarity between two tables and the

pairwise attribute matching scores are aggregated to compute an overall expansion

score. Schema complement score is obtained by the product of entity coverage score

and attribute benefit score. Entity cover score is calculated as the fraction of entities

in one table covered by another table. Attribute benefit score quantifies the benefits

of adding additional attributes from a candidate table to the query table. Zhu et

al. [310] speed up the candidate table retrieval stage by a new index structure called

Locality Sensitive Hashing Ensemble. JOSIE [309] formalizes the joinable table

search problem as an overlap set similarity search problem by considering columns

as sets and matching values as intersection between sets.

Table-based search becomes more and more important for modern data science

and analysis [168]. Searching over massive data repositories (also called data lakes)
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enables data integration in the workflow more effectively and efficiently [305].

2.6 Search as a Service: Data-centric applications

Dataset search can be considered as an interface to an extremely large knowledge

base and sometimes serve as an intermediate step for downstream applications.

Juneau [305] provides the function of searching related tabular datasets so that

tables with similar metadata can be used as augmented training data for machine

learning applications. Benefiting from the large amount of indexed data, dataset

search can also be used for data imputation [6] where the missing values of a dataset

can be recovered. Many applications adopt a two-stage framework where the first

stage is a dataset search application. Open domain question answering systems [201,

66, 51] rely on a generic dataset search engine to find a small set of candidate tables

so that more complicated models can be used for fine-grained answering.

2.7 Summary

In this chapter, we systematically discuss several aspects about a dataset search

engine. We summarize different techniques to obtain datasets that can be indexed

by a dataset search engine. We present multiple dataset management tasks that

can help prepare datasets for downstream applications or improve the quality of

datasets. Different types of dataset search tasks are also introduced. The material

in this chapter can be used as a guideline for dataset search engine developers.
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Chapter 3

Dataset Acquisition from

Academic Literature

3.1 Introduction

In recent years, there has been a significant increase in the number of published pa-

pers for AI related tasks, and this leads to the introduction of new tasks, datasets,

and methods. Despite the progress in scholarly search engines, it is challenging to

connect previous technologies with new work. Researchers from the semantic web

community have noticed the importance of organizing scholarly data from a large

collection of papers with tools like the Computer Science Ontology [227]. Natural

language processing researchers have proposed methods to extract information from

research articles for better literature review [179]. Unlike prior work which focuses

on the extraction of paper metadata and key insights, we design an ontology and

knowledge base for better evaluation of AI research. Papers With Code1 is a website

that shows the charts of progress of machine learning models on various tasks and

benchmarks. Those charts can help researchers to identify the appropriate litera-

ture related to their work, and to select appropriate baselines to compare against.

Although manually updating this leaderboard may keep it accurate, it will become

1https://paperswithcode.com/
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more difficult and time consuming as more and more papers are published.

Knowledge extraction from research papers has been studied by the informa-

tion extraction (IE) community for years. Hou et al. [104] extract ⟨Task, Dataset,
Metric, Score⟩ tuples from a paper where the paper content is extracted from pdf

files. In their two-stage extraction framework, they first extract ⟨Task, Dataset,

Metric⟩ tuples, and then for each tuple, they separately extract ⟨Dataset, Metric,

Score⟩ tuples. Kardas et al. [118] specifically focus on extracting table results by

taking advantage of available LATEXsource code of papers. Work by Jain et al. [112]

developed in parallel to ours uses data from Papers With Code as a distant supervi-

sion signal and introduces a new document-level IE dataset for extracting scientific

entities from papers. Our work is complementary to AI-KG [76] which takes the

abstract of a paper as input. We also consider other sections and tables in a paper

where the evaluation scores of different metrics always occur. Our ontology can

be considered as the front end of a knowledge system that organizes all extracted

knowledge from different backend IE tasks.

In this chapter, we first introduce the Machine Learning Progress Ontology

(MLPO) which defines the core entities and relations useful for progress tracking of

AI literature. Then, we propose to construct the Machine Learning Progress Knowl-

edge Base (MPKB) from a paper corpus using information extraction techniques.

The ontology definition and pipeline of knowledge construction are available online2.

Dataset Model

Result

Paper
mlp : propose

mlp : testOnModel

mlp : reportResultsFrom
mlp : testOnDataset

Task

mlp : solvedBy

mlp : onTaskxsd:decimal
mlp : testOnMetric

Figure 3.1: The main classes and relations in MLPO. The blue arrow signifies a object
property and the orange arrow signifies a data property.

2https://github.com/Zhiyu-Chen/Machine-Learning-Progress-Ontology
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3.2 Machine Learning Progress Ontology

As shown in Figure 3.1, the MLPO focuses on the results of machine learning ex-

periments, which differentiates it from prior work. This ontology defines five core

classes: Task, Dataset, Result, Model and Paper. To support proper citation of

results, it also includes general properties such as Venue, Author and Title which

have already been defined in the BIBO ontology3. In total, MLPO has 22 classes,

18 object properties and 24 data properties.

Figure 3.2: An example of extracted Result individuals.

It is important to notice that the Result class connects to all other core classes.

From a single paper, we could extract multiple Result individuals and each Result

individual records the used dataset, the used model, the target task and also the

reported evaluation score. For Task class, we create different subclasses representing

different AI tasks (e.g., natural language processing task). We create various data

properties for evaluation metrics which have different range constraints. For exam-

ple, the range of data property “TestOnEM” which represents the exact matching

3https://www.dublincore.org/specifications/bibo/
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metric, is a decimal as shown in Figure 3.2. We use WebProtégé4 to develop our

ontology and an example of extracted individuals is shown in Figure 3.2.

3.3 Knowledge Base Construction

Constructing the Machine Learning Progress Knowledge Base (MPKB) involves two

tasks: scientific entity recognition (SER) and relation classification (RC). For the

SER task, we identify the core entities in a paper which are datasets, tasks and met-

rics. For the RC task, for simplicity, here we only show how to identify two relations

in a paper: whether a dataset is used for a task and evaluated with a metric. For the

example in Figure 3.2, we would like to know whether “SQUAD2 dev” is used for

the task of “machine reading comprehension” and is evaluated with “TestOnEM”.

We believe the methods can also be applied to recognize other entities and relations.

We leave extracting all the mentioned relations defined in MLPO to future work.

3.3.1 Scientific Entity Extraction

We treat entity extraction as a sequence tagging problem. One challenge is that we

only have document-level instead of sequence-level annotations. As a solution, we

use fuzzy matching to find the entity spans in a paper. Given the text of a paper, we

first use spaCy5 to find the noun phrases. Then we match the noun phrases with pre-

curated entity names using the similarity measure based on Levenshtein Distance6.

For tasks and metrics, we set the similarity threshold to 0.5. For datasets, we set the

matching threshold to 1 (i.e., exact match). If the fuzzy matching similarity between

a noun phrase and an entity name is larger than the corresponding threshold, then

we annotate the noun phrase as the target entity. We also designed a tagging schema

similar to BILOU [215]. For section titles in the paper, we annotate every token

either as at the first, middle or last position. For every sentence in each section,

we tag the word as at the first, middle or last position of the sentence. For tokens

4https://webprotege.stanford.edu/
5https://spacy.io/
6https://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-\matching-in-python/
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belonging to an entity in a sentence, we tag them with the corresponding entity

types. Based on the paper text and annotated tags, we train a Bi-LSTM-CRF

model [108] to predict the tags of test data.

3.3.2 Relation Classification

We use an information retrieval method for relation classification. To construct the

query q, we concatenate the text of a result tuple ⟨Task, Dataset, Metric⟩. We

select the first 100 tokens from each section of a paper as its text representation Tp.

Finally, we match the two inputs with a neural ranking model. In particular, we

use Conv-KNRM [69] to predict the binary relevance score of a triple-paper pair:

label = ConvKNRM(q, Tp) (3.1)

The label is equal to 1 if the triple is relevant to the paper, otherwise the label is

equal to 0. We choose Conv-KNRM in this paper because it is efficient. A state-of-

the-art model like BERT [77] can also be used as in Hou et al. [104].

3.4 Experiments and Evaluation

Constructing the knowledge base for scientific datasets has three steps. First, we

recognize the entities in papers. Then we build the relations among entities. In the

final step, we aggregate all the extracted information for papers to form the full

knowledge base. In this section, we evaluate the performance of the first two steps

separately.

We randomly divided the paper collection of the NLP-TDMS dataset [104]

into training (80%) and testing (20%) sets. For the Bi-LSTM-CRF model, we set

the embedding dimension to 100. We use a bi-LSTM with 2 layers. We use Adam

optimizer for gradient descent with a learning rate that is equal to 0.0001. When

training relation classification, we create k positive result tuple-paper pairs (one for

each tuple used to annotate the paper) and n − k negative pairs, where n is the
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total number of result tuples in the ground truth. In the training phase of relation

classification, given a set of n triples that represent the ground truth label collection,

if a paper is annotated with k triples, we create k positive triple-paper pairs and

n − k negative pairs. Binary cross entropy loss is used to train the model. This

results in many more negative samples than positive samples: 94% of result tuple-

paper pairs are negative. To address this imbalance, we oversample the positive class

by creating 20 copies of each positive sample. In addition to that, when creating

negative samples for the collection of labels (TDM triples), there are negative triples

that are very similar to the positive triples, and this can lead to confusion in the

neural model when learning the parameters. In order to solve this problem, we use

fuzzy matching to calculate the similarity between a given negative label and the

positive labels of a paper. We discard negative samples that have similarity with

positive triples larger than 50.

From the result in Table 3.1 and Table 3.2, we can see that among different entity

types, Task is the easiest type to recognize. Dataset has higher precision but lower

recall than Metric. Such variances may indicate that tasks have more observable

patterns to appear in a paper than other entity types, so that the predicted sequence

tagging is more accurate. Conv-KNRM achieves high results on all the evaluation

metrics for predicting irrelevant paper-triple pairs. The most challenging part for

the neural network is to capture the semantic similarities between paper content

and ⟨Task, Dataset, Metric⟩ triple for a positive pair.

Table 3.1: Results of entity extraction.

Tag Precision Recall F1
Task 0.99 1.00 0.99

Dataset 0.66 0.36 0.46
Metric 0.44 0.46 0.45
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Table 3.2: Results of relation classification.

Paper-triple label Precision Recall F1
Irrelevant (0) 0.93 0.99 0.96
Relevant (1) 0.98 0.51 0.67

3.5 Dataset Search on KG

For each paper, we do entity extraction and relation classification. We save the

results into one OWL file7 with OWL syntax as the final knowledge base. Based

on the knowledge base, we are able to answer some queries. For example, we can

query the datasets that are used in a given task. We test our knowledge base using

Protege8. In Figure 3.3, we show a use case where we ask the knowledge base what

are the datasets for the task of sentiment analysis.

Figure 3.3: Demonstration of querying the constructed knowledge base.

7https://www.w3.org/2007/OWL/wiki/Document_Overview
8https://protege.stanford.edu/
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3.6 Summary

In this chapter, we have proposed an ontology specifically designed for progress

tracking of AI tasks such as natural language processing and computer vision. We

first have defined the core entities and relations in the proposed Machine Learning

Progress Ontology (MLPO). Then we have proposed methods to extract information

from papers to construct a knowledge base for AI evaluation. The resulting knowl-

edge graph can be used for various downstream tasks. In the end of this chapter,

we show an example of how to search over the constructed KG through a SPARQL

query.

3.7 Bibliographic Notes

In this section, we review three lines of relevant research work: (1) information

extraction for scientific papers; (2) natural language inference. We discuss how they

are related to our work.

There is some related work from the information extraction community. Gábor

et al. [90] propose unsupervised methods to annotate concepts and semantic rela-

tions in paper abstracts. The task was then extended to SemEval-2018 Task 7 [89].

Luan et al. [155] extend the dataset by adding more relation types. They also de-

velop a framework called Scientific Information Extractor to extract six types of

scientific entities and seven relation types. However, all such efforts only focus on

paper abstracts and information in other sections of a paper is not considered. Be-

sides, there is a gap from information extraction to knowledge base construction.

For example, a paper can mention multiple tasks and datasets, but it is possible

that not all tasks or datasets are studied in the paper, which means the extracted

positive entities and relations are negative cases under the context of constructing a

knowledge base that records the tasks and datasets studied in a paper. The closest

idea to our work was proposed in Hou et al. [104], where the authors extract ⟨Task,

Dataset, Metric, Score⟩ tuples from a paper where the paper content is also used.

In their two-stage extraction framework, they first extract ⟨Task,Dataset,Metric⟩
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tuples (TDM tuples), and then for each tuple, they separately extract ⟨Dataset,

Metric, Score⟩ tuples (DMS tuples). Both stages are considered as a natural lan-

guage inference task where the premise comes from the paper and the hypothesis

is a targeted tuple. The weakness of their method is that their hypotheses (TDM

or DMS tuples) are predefined which means they skip the named entity recogni-

tion step. For a new paper, there could be a large number of target tuples to be

classified and it is unnecessary and ineffective to classify all the hypotheses. How-

ever, this is an important step in the knowledge base construction pipeline. Due

to lack of annotated data, we use their annotations as a starting point and also

“recover” the complete pipeline of constructing a knowledge base with the named

entity recognition as the 1st step.

The task of natural language inference, also called recognizing textual entailment,

is to determine whether a “hypothesis” is true (entailment), false (contradiction),

or undetermined (neutral) given a “premise”. In general, it involves classifying the

relationship between two sentences. The release of the Stanford Natural Language

Inference dataset [30] made it possible to achieve good results on this task with

neural network methods. More recently, BERT [77] and several other pretrained

models have achieved the new state-of-the-art results on multiple NLI benchmarks9.

In this chapter, we also formulate the relation classification task as a natural

language inference task. Given two sentences including different target entities, we

classify the relationship of the two entities (sentences).

9https://gluebenchmark.com/leaderboard
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Chapter 4

Schema Label Management for

Datasets

Impoverished descriptions and convoluted schema labels are common challenges

in data-centric tasks such as schema matching and data linking, especially when

datasets can span domains. To address these issues, we consider the task of schema

label generation. Typically, schema labels are created by dataset providers and are

useful for users to understand a dataset. The motivation behind the task is that

a lot of data linking systems require overlapping information between two datasets

and rely on unique identifiers of schema labels. Moreover, it is common for schema

labels in different datasets to have different identifiers even when they refer to the

same concept. With no naming standard for schema labels, unintelligible labels

are widely found in real-world datasets. For example, many schema labels contain

abbreviations and compound nouns that hinder automated matching of attributes

in corresponding datasets. Through schema label generation, more common (and

thus understandable) schema labels can be provided to allow for broader schema

matches in contexts such as dataset search and data linking. We develop a variety

of features based on analysis of dataset content to enable machine learning methods

to recommend useful labels. We test our approach on two real-world data collections

and demonstrate that our method is able to outperform the alternative approach.
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4.1 Introduction

Organizations and individuals worldwide make datasets public and enable users to

freely explore such valuable resources. An increasing number of online data sources,

such as governmental data portals (e.g., data.gov1, data.gov.uk2 and data.gov.sg3),

and more general facilities like datahub4 (alongside older sites such as the UCI ma-

chine learning repository5), suit the diverse needs of data experts, researchers, and

journalists. More data also means more challenges as it becomes a non-trivial task

to effectively integrate datasets from different resources. In order to help agencies to

manage their data, the U.S. government released a policy6 to instruct (government)

data providers to provide metadata with their datasets. It is a great opportunity

for technical communities to bring heterogeneous data together for diverse applica-

tions and also a big challenge which may require advanced approaches to manage

the datasets. However, many datasets do not adopt metadata standards so that

open source data management systems (e.g., CKAN7) are unable to be utilized.

Another challenge is that different agencies are likely to have different data formats

and standards [254] resulting in difficulties in merging heterogeneous datasets.

Among all types of data, tabular data or the data table is one of the most

important. It presents relational data in a compact way and is commonly used in

different applications such as knowledge management and web data presentation. A

data table usually has a header row, consisting of schema labels (attribute names),

followed by data rows storing the actual data values of corresponding attributes.

In this chapter, we focus on this simple data table format although there are data

tables with more complex structures where headers are nested. Tabular data is

widely used in different communities because it clearly shows the relationships of

different entities and facilitates data analysis. Many tools, such as Microsoft Excel,

1https://www.data.gov/
2https://data.gov.uk/
3https://data.gov.sg/
4http://datahub.io/
5http://archive.ics.uci.edu/ml/index.php
6https://digital.gov/open-data-policy-m-13-13/
7https://ckan.org
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Google Spreadsheets and Tableau, can easily work on tabular data for analysis and

visualization.

Current data linking systems usually rely on the overlapping information in data

itself or more commonly, the corresponding metadata fields such as title, tags, de-

scription and publisher. However, non-dictionary words (NDWs) commonly appear

in data tables and can have a significant impact on data linking. The existence of

NDWs in schema labels is also a well-known problem in schema matching systems

[214, 236]. However, users are less likely to use query terms which are NDWs so

that datasets with NDWs as headers are less likely to be returned by the retrieval

system. The case is even worse if the dataset has neither table headers consisting

of dictionary words nor text description.

Table 4.1: Sample from a dataset of NYC Farmers Markets.

Farmers Market Name ... State Zip Code Latitude Longitude

Carroll Gardens Greenmarket ... NY 11231 41 -74

Cortelyou Greenmarket ... NY 11226 41 -74

Cypress Hills Youthmarket ... NY 11208 41 -74

East New York Farm Stand ... NY 11207 41 -74

East New York Farmers’ Market ... NY 11207 41 -74

Fort Greene Park Greenmarket ... NY 11205 41 -74

... ... ... ... ... ...

Graham Avenue Farmers’ Market ... NY 11206 41 -74

Table 4.2: Sample from an Oceanographic dataset.

cruiseid year si month gmt day gmt time gmt ... lat lon

EN319 1999 T.Durbin 2 21 29.3 ... 41.4922 -71.4187

EN323 1999 J.Ledwell 5 14 1146.88 ... 41.5234 -70.6723

EN330 1999 C.Greene 10 23 140.4 ... 42.5035 -66.8025

OC342 1999 B.Houghton 5 24 19.5 ... 41.0683 -67.4617

... ... ... ... ... ... ... ... ...

OC343 1999 D.Hebert 6 25 731.47 ... 40.9997 -67.6014

To address this problem, we propose a supervised method which recommends

alternative schema labels. Considering Tables 4.1 and 4.2 from different domains,
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we can easily identify that the column “latitude” in Table 4.1 refers to the same

concept as “lat” in Table 4.2, but it is not an easy task for data linking and schema

matching systems. If we can recommend the column “lat” with new schema labels

such as “latitude”, “location”, it can not only facilitate integrating the column of

Table 4.2 with other columns, but also help users to better understand the meaning

of this column.

We construct a variety of features from column content and enable machine

learning models to generate alternative schema labels. To evaluate our method, we

test on datasets with different heterogeneity and show that the features are effec-

tive for the schema label prediction task. Additionally, we experiment on integer

columns, float columns, string columns and show that our method provides consis-

tent performance on those different columns types.

In this chapter, we summarize our contributions as follows:

• We propose a domain-independent method for schema label prediction.

• We run experiments on real world datasets with varying degrees of heterogene-

ity and demonstrate the effectiveness of our methods on the task of schema

label prediction. Our experimental results suggest that the difficulty of the

task increases with the heterogeneity of the datasets.

• We evaluate our method on columns of three basic data types (integers, floats,

and strings) and demonstrate that our method outperforms the baseline on

each of them.

4.2 Methods

4.2.1 Problem Statement

In this chapter, we focus on finding alternative schema labels (column names) based

on analysis of the content of the column.

We consider data tables with n columns and m + 1 rows with the following

format:
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
c1 c2 ... cn

v1,1 v1,2 ... v1,n

... ... ... ...

vm,1 vm,2 ... vm,n


For convenience, we use the following naming conventions in the rest of the chapter:

• schema label (or column name): cj, where j ∈ [1, ..., n].

• schema content (or column content): Cj = {v1,j, ..., vm,j}, j ∈ [1, ..., n]

• column: (cj, Cj), j ∈ [1, ..., n].

Given Cj and k target labels L = {l1, l2, ..., lk}, our objective is to learn a function

that models P (l|f(Cj)), (l ∈ L) where f is a function extracting features from Cj.

The features will be introduced in the following section. A perfect prediction should

satisfy:

cj = arg max
l∈L

P (l|f(Cj))

4.2.2 Schema Label Prediction Features

Our approach to predicting schema labels is to leverage features extracted from

column content. Past research has indicated that useful features are important

for table understanding [271, 110]. We assume that a schema label and evidence

observed from the column content are highly related. One obvious example is that

column contents corresponding to different data types are significantly different.

Though column data types are not provided directly for the majority of public

datasets, machine learning models are able to identify such features automatically

[255].

Our task is much more challenging than just inferring the data type, since the

number of data types is small and constant while the number of possible schema

labels is uncertain but large. It also means our model should be able to capture

50



the differences among columns with the same data type. As shown in Table 4.1, a

column of zip codes usually have data cells consisting of five digits, while a column

of latitudes usually have data cells that are real numbers ranging from -90 to 90.

If there is a column in the data table without a header and we know all the values

in the column are five-digit numbers, the header is more likely to be “Zip Code”

instead of “latitude”. Therefore, for possible numerical columns, the maximum

value and minimal value are important features to characterize them. However, not

all columns are numerical columns. Then for non-numerical columns, we instead use

the average maximum value and average minimal value of other columns in order

to appropriately minimize the impact of these features.

We define content unique ratio and content histogram to describe the distribution

of cell values. Content ratio [82] is usually used as a feature to categorize the class

of table where the ratio of cells containing content of a specific type is calculated.

Similarly, we use content unique ratio to categorize a column where the proportion

of the number of unique cells over the number of all cells is calculated. In Table 4.1,

the content unique ratio is 1/102 ≈ 0.01 for “State” if the table has 102 rows and

all cell values under this schema label are all “NY”. In contrast, the content unique

ratio is 102/102 = 1 for “Farmers Market Name” if all cell values under this schema

label are different.

A content histogram contains more fine-grained information about the content

distribution than the content unique ratio. To obtain the content histogram, we

rank the unique cell values by frequencies (low-frequency first) and generate a vec-

tor where the ith dimension is the frequency of the ith ranked cell value. For different

column contents, we could obtain the vectors of various lengths. For data.gov and

WikiTables which are two datasets used in our experiment, the medians are 26 and

13 respectively. Therefore, we generate the content histogram by resampling the

vector to a 20-dimensional vector using FFT transformations8. We show the con-

tent histogram of “Farmers Market Name” and “Zip Code” of Table 4.1 in Figures

4.1a and 4.1b, respectively. The flatter shape of estimated frequencies of “Farmers

8We use the method from https://docs.scipy.org/doc/scipy-0.17.0/reference/

generated/scipy.signal.resample.html
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(a) 20-dimensional content histogram
of “Farmers Market Name” in Ta-
ble 4.1.

(b) 20-dimensional content histogram
of “Zip Code” in Table 4.1.

Figure 4.1: Examples of content histograms.

Market Name” indicates the content distribution is closer to a uniform distribution

than “Zip Code”.

If we treat each column content as a document, then the schema label prediction

can be seen as a document classification task, where classes are possible schema

labels. So it is reasonable to incorporate bag-of-words (BoWs) representation as

features. For column c, we construct the BoWs features as

Bc = {freq(u1), ..., freq(ui), ..., freq(un)},

where n is the vocabulary size, ui is the ith word in the vocabulary and freq

represents the function calculating the frequency of ui in c. To save memory,

we only use character-level unigrams in BoWs (e.g., “EN319” is decomposed into

“E”,“N”,“3”,“1” and “9”). In our experiment, we use BoWs features to construct

the baseline method. The difference is that instead of considering character-level

unigrams, we use the TF-IDF representation of tokens extracted from column con-

tent.

In a study of table header detection [86], Fang et al. showed that single row

features could differentiate header rows and data rows. Inspired by their work, we

extract the following single column features on each column instead of each row:

number of characters, percentage of numeric characters, percentage of alphabetic

characters, percentage of symbolic characters, percentage of numeric cells, average

cell length, maximum cell length and minimum cell length. These features could be

considered as an extension of the BoWs features which summarize the statistics of
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BoWs.

We summarize all the features in Table 4.3.

Table 4.3: A list of curated features for schema label prediction

ID Feature length Description

1 1 maximum value in the column content

2 1 minimum value in the column content

3 1 content unique ratio

4 20 content histogram

5 # of unique unigrams9 BoWs (character-level unigram)

6 1 number of characters

7 1 percentage of numeric characters

8 1 percentage of alphabetic characters

9 1 percentage of symbolic characters

10 1 percentage of numeric cells

11 1 average cell length

12 1 maximum cell length

13 1 minimum cell length

4.3 Experiments

In this section, we first discuss the datasets used in our experiments. Then we evalu-

ate our method from two perspectives. In exact schema label prediction and normal-

ized schema label prediction, we evaluate performance of the model and demonstrate

the usefulness of the aforementioned features.

4.3.1 Datasets

For our first dataset, we collected all available comma-separated value (CSV) files

(7485 in good format) from Data.gov which are contributed by more than 50 U.S.

government agencies. This dataset covers a variety of topics such as agriculture,

climate, economy, and health. Web tables are also tabular tables and have an im-

portant role in applications like Web Data search and knowledge base construction.

9741 for data.Gov and 54982 for WikiTables.
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Therefore, we also experiment on WikiTables [27], which contains 1.6M tables ex-

tracted from Wikipedia.

Figure 4.2: Rank-sorted frequencies of column labels

We observe that raw schema labels exhibit properties similar to terms in natural

language, in that the rank-sorted frequencies of schema labels produce a curve which

approximates the well-known Zipf’s law and reflects the heterogeneity of schema

labels.

4.3.2 Exact schema label prediction

We first evaluate our method on the task of exact schema label prediction. Consid-

ering a collection of tabular datasets where many schema labels are blank, our goal

is to predict the missing schema labels by the corresponding column content. Specif-

ically, we consider two questions: 1) How useful are features extracted from dataset

content for schema label prediction? and 2) Does heterogeneity of the dataset col-

lection make the task more difficult?

To answer the first question, we build machine learning models using the features

proposed in Section 4.2.2, and evaluate the prediction results under different metrics.

We treat schema label prediction as a multiclass classification task, where each

schema label in the training set represents a class. We calculate macro-averaged and

micro-averaged precision, recall and F-score of predictions on the test set. Macro-

average is the mean of scores of all the classes, thus giving equal weight to each class.

Micro-average, giving equal weight to each prediction decision, is the score obtained

by globally counting the total true positives, false negatives and false positives.
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Larger classes have a larger contribution to the micro-average. In the multiclass

classification scenario, the micro-average precision, recall and F-score are the same,

thus we only show the Micro F-score in our results. We also report the top-n

accuracy which is the fraction of test data for which the correct label is among the

top-n labels considered most probable by the model.

The second question can be implicitly answered by comparing the results of the

following datasets:

• Gov Rand: 300 datasets are randomly selected from Data.gov.

• Gov NY: 300 datasets are randomly selected from Data.gov published by

NYC Open Data10.

• Wiki Rand: We experiment on 554218 tables from WikiTables which have

at least 4 columns and 6 rows. Since a lot of tables are in unexpected format,

we further filter those columns whose schema labels appear no more than 100

times.

The sizes of each dataset and training and testing partitions are found in Table 4.4.

Different data owners usually publish datasets in different domains, with different

vocabularies and thus have different pattern of schema label creation. Thus, the

difficulty caused by heterogeneity can also be shown by comparing the results on

Gov Rand and Gov NY. Since there are only 327 datasets published by NYC Open

Data, we randomly select 300 datasets for both Gov Rand and Gov NY so that the

results from the models are more comparable.

For our experiment, we train random forest classifiers using the curated features

introduced in Section 4.2.2. The default parameters of scikit-learn implementation11

are used except that the number of trees in the forest is set up to 25 (to reduce

memory requirements).

10https://opendata.cityofnewyork.us/
11http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
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Table 4.4: Statistics of extracted columns

Dataset #train #test #classes

Gov Rand 3833 1644 4048

Gov Rand (freq >1) 1415 607 593

Gov NY 2799 1200 2494

Gov NY (freq >1) 1391 597 483

Wiki Rand 806755 1882425 2234

Figure 4.3: Top-n accuracy of exact schema label prediction

As a baseline, we use the same classifier setting training on TF-IDF features

extracted from column contents where each cell is tokenized.12 It is important to

notice that a large number of numeric values appear in the datasets which result in

an extremely large vocabulary size. Thus dimension reduction is helpful in order to

improve the classification efficiency. Truncated SVD13 (a.k.a., LSA) is used to reduce

12http://www.nltk.org/_modules/nltk/tokenize/toktok.html
13http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.

TruncatedSVD.html
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Table 4.5: Micro average and Macro-average scores of exact schema label prediction

Features Dataset Micro-F Macro-P Macro-R Macro-F

Curated

Wiki Rand 0.42 0.30 0.21 0.23
Gov Rand (freq >1) 0.85 0.79 0.83 0.80

Gov Rand 0.30 0.13 0.15 0.14
Gov NY (freq >1) 0.86 0.79 0.83 0.80

Gov NY 0.45 0.18 0.21 0.19

BoWs

Wiki Rand 0.34 0.34 0.16 0.19
Gov Rand (freq >1) 0.35 0.23 0.27 0.23

Gov Rand 0.11 0.05 0.06 0.05
Gov NY (freq >1) 0.28 0.12 0.14 0.12

Gov NY 0.13 0.03 0.04 0.03

Combined
(Curated+ BoWs)

Wiki Rand 0.43 0.30 0.22 0.24
Gov Rand (freq >1) 0.86 0.84 0.83 0.82

Gov Rand 0.37 0.24 0.25 0.24
Gov NY (freq >1) 0.94 0.82 0.85 0.83

Gov NY 0.49 0.31 0.32 0.30

the dimensionality of the TF-IDF representation and BoWs features to 300. We also

concatenate the curated features with baseline BoWs features in order to see whether

the combination of features could further improve the results. For Gov Rand and

Gov NY, we split each of them into 70% training set and 30% testing set. Since

the number of classes in Gov Rand and Gov NY is very large but the dataset size

is relatively small, the results could be significantly affected by infrequent schema

labels, especially those that only appear once. As a result, many labels in the testing

set do not appear in the training set. Therefore, we also experiment on Gov Rand

and Gov NY after filtering those columns whose schema label only appears once

and we call them Gov Rand(freq >1) and Gov NY(freq >1) respectively.

Experimental results are reported in Table 4.5. We observe that our curated

features approach achieves better results than the baseline on all datasets. For both

methods, scores on Gov NY are higher than scores on Gov Rand, which suggests

the heterogeneity caused by data creators indeed increases the difficulty of the task.

After filtering those schema labels that only appear once, the scores of both meth-

ods significantly increase, since the cases in which a class in the testing set does not

57



appear in the training set have decreased. However, our method has a more consid-

erable degree of improvement than the baseline and achieves an F-score greater than

0.8 for both the Macro-average and Micro-average. This indicates that our method

has decent performance on popular schema labels. When applied to WikiTables, we

notice that the gap of performance between our method and baseline is narrower. It

is likely that schema label prediction is more like a text classification problem with

regard to WikiTables. Compared to datasets on data.gov, WikiTables have tabular

data with smaller size, since tables with thousands of rows can hardly be displayed

on a web page. A lot of datasets on data.gov are statistics and it is very likely that

the content of a single column is occupied by numbers. As content extracted from

an encyclopedia, WikiTables have more text description about entities and thus the

content of a column is closer to a document.

Figure 4.3 shows the top-n accuracy results. The performance on datasets from

data.gov has no improvement when n is bigger than 3. As we discussed before, many

of the labels in the testing set do not appear in the training set, and this sets an

upper bound on the accuracy of exact schema label matching. For example, there

are 594 columns whose labels only appear in the testing set of Gov NY; therefore

the accuracy can never exceed (1200 − 594)/1200 = 50.5%. While for Wiki Rand,

the accuracy increases when n increases for both methods.

We calculated the Gini importance of curated features of model trained on

Gov NY. For BoWs features and content histogram, we simply sum the importance

scores of all the dimensions. As a result, BoWs features and content histogram make

the most contribution. If we consider each dimension as a single feature, then the

most important three features are total number of characters, content unique ratio

and the first dimension of content histogram.

From the above observations, we know that our method outperforms the baseline

in all cases. Moreover, combining our method with baseline features can further

improve the performance as expected. Since we only use character-level unigram

features in our method and adding word-level TF-IDF features could relieve this

weakness. The prediction results can be significantly improved by filtering infrequent

labels which means our methods can efficiently predict the schema labels especially
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for popular ones. We also confirm that the difficulty of the task increases with the

heterogeneity of the datasets.

4.3.3 Normalized schema label prediction

Exact schema label prediction is a pretty strict evaluation, since a true-positive re-

quires the predicted schema label to perfectly match the original label of the tested

column content. However, there are thousands of classes and the distribution is

imbalanced as shown in Figure 4.2. It is possible that a class in the training set may

not appear in the testing set. However, a “wrong” prediction could be potentially

useful if it refers to the same concept. For example, consider the target label “Na-

tionality”: a semantically correct prediction from the model could be “Country”.

Therefore, we should not consider “Country” as a wrong prediction since they refer

to the same concept. More examples are shown in Table 4.6.

Table 4.6: Examples of “wrong” predictions

Original labels Predictions

Year Season

Opponent Team

Pos Position

Score in the final Score

In order to relieve the situation, we first do case-folding on schema labels and

then rank them by their frequencies in Gov Rand and Wiki Rand. From the top

2000 schema labels, we normalize a label by another label in this set which is a

synonym of the original label and more human readable. In addition, 89 labels

annotated as uninterpretable are removed.

Similar to Section 4.3.2, we train separate models based on different features

and datasets. The results of normalized schema label prediction on Gov Rand and

Wiki Rand are reported in Figure 4.4 and Table 4.7. As expected, the scores under

different metrics significantly increase. Besides, we notice that the top-n accuracy

still grows when n is bigger than 3 on Gov Rand, which is different from exact
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schema label prediction. It further indicates that our model can capture the relation

between a schema label and its content.

Figure 4.4: Top-n Accuracy of normalized schema label prediction

Table 4.7: Micro average and Macro-average scores of normalized schema label predic-
tion

Features Dataset MicroF MacroP MacroR MacroF

curated
Gov Rand 0.36 0.21 0.22 0.20
Wiki Rand 0.62 0.33 0.29 0.30

BoWs
Gov Rand 0.25 0.16 0.17 0.15
Wiki Rand 0.55 0.29 0.20 0.23

4.3.4 Evaluation on different data types

In this section, we evaluate schema label prediction methods on columns with dif-

ferent data types. We use pandas14 to automatically infer the data type of a column

and only keep those columns whose data types can successfully be identified by the

IO tool. 1000 columns are randomly selected for integer type, float type and string

type respectively. For each type of column, we train a model on 70% of data and

14https://pandas.pydata.org/
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evaluate on the rest. The experiment results for our method and baseline are re-

ported in Table 4.8. As expected, our method outperforms the baseline on all the

three types of columns. It is also interesting to notice that both methods perform

the best on float columns while perform the worst on string columns. There could

be two reasons. First, string columns have more unique labels than float columns

and integer columns, which means predicting schema labels of string columns is

inherently a more difficult task. Second, some of the features are based on the

numeric values in the column content, while for string columns, such features are

treated as missing values and calculated from average values from other columns.

Such features could be useless for string columns and damage the performance of

the model. This fact indicates that designing different features for different data

types could further improve the performance of schema label prediction.

Table 4.8: Micro average and Macro-average scores on different data types

Features Data type MicroF MacroP MacroR MacroF

curated
integer 0.31 0.11 0.12 0.11
float 0.37 0.10 0.11 0.10
string 0.23 0.11 0.12 0.10

BoWs
integer 0.25 0.10 0.11 0.10
float 0.32 0.07 0.09 0.07
string 0.20 0.08 0.09 0.08

4.4 Summary

In this chapter, we have considered the problem of schema label prediction based

on the content of a column. We treat it as a multi-class classification task, in which

each class represents a schema label. A variety of features are developed to solve

the problem. Our method has been evaluated on two real-world datasets: tabular

data collected from data.gov and WikiTables extracted from Wikipedia. We first

evaluate the approach on exact schema label prediction, which requires the predicted

label to exactly match the original schema label. In this task, our method clearly
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outperforms the baseline on all datasets. We find that heterogeneity of the datasets

likely makes the task more difficult.

Since the distribution of schema labels is quite imbalanced, many labels used

in testing do not appear in the training set, which makes it inherently difficult

to perform well. Therefore, we also experiment on top-ranked normalized schema

labels. We select the most frequent 2000 schema labels across both datasets and

merge labels that are synonyms. As expected, the scores under different metrics

significantly increase compared with the results of exact schema label prediction.

Additionally, we demonstrate that our method outperforms the baseline on columns

of different data types. We notice that both methods perform the best on float

columns while the worst on string columns, since some proposed features could be

useless for string columns. It reminds us that using different features for different

data types are necessary for schema label prediction.

One limitation of our current method is that we only consider the features from a

single column, without considering its relationship with other columns co-occurring

in the data table. Intuitively, if two columns are similar, then our method may

give them the same schema label. However, it is unlikely for two identical columns

to appear in the same data table. By considering the occurrence of other schema

labels, such cases could be disambiguated.

One application of our method is to facilitate dataset retrieval. An existing chal-

lenge of dataset retrieval is that user queries seldom contain terms that are broadly

used in schema labels, which results in low recall of related datasets. In our experi-

ment, we find that our method often gives a prediction that are synonyms of original

schema label or share the hypernym with the original schema label. Usually, the

composition of NDWs schema labels is irregular and complicated but their synonyms

or hyponyms could be searched by users. For example, for a column whose schema

label is “Pos”, our method could predict the schema label as “Position”. However,

“Position” is a term more preferred by users and more valuable to be indexed. We

expect that using the predicted labels as possible term expansions (either for queries

or at indexing time), the dataset retrieval system can have improved recall.
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4.5 Bibliographic Notes

Related work in this chapter is in three topics: schema matching, data linking and

semantic table interpretation.

In the database community, schema matching is a critical problem for integrating

heterogeneous data sources, which aims to find pairwise-attribute correspondence

in different schemas. It is similar to our task, except that they do not require that

the pair of schema labels are exactly the same. According to the classification of

Rahm and Bernstein [209], there are two major types of schema matchers: schema-

only matchers and instance-based matchers. Schema-only matchers are limited to

schema information such as schema name, description and data type. For example,

Sorrentino et al. [237] develop a lexical annotation technique to help identify similar

schema labels. However, the result of lexical annotation is strongly affected by

the presence of non-dictionary words in schema labels such as abbreviations and

compound words. For this reason, they expand abbreviations with the help of an

online dictionary and enrich WordNet with meanings of compound nouns. The

output of their system can be used as the input of another schema matching system

and improve the performance of schema matching. Ratinov and Gudes [214] solve

the abbreviation issue by manually designing abbreviation patterns and reduce it

to a supervised pattern classification problem. As we can see, the quality of schema

labels have a huge impact on schema-only matchers and thus those methods put

effort into the analysis of abbreviations and compound nouns in schema labels.

Even for well-known schema-only matchers, such as Artemis [40], Cupid [160] and

COMA [80], they require a specified external dictionary to measure the similarity

of schema labels at some steps. In real world datasets, abbreviation and compound

nouns cannot cover all the complex patterns of schema labels. Sometimes the column

name of a data table has no real meaning or is even missing. Moreover, available

schema information of real world datasets is limited.

Our method is closer to instance-based methods where we give insight into the

data content. Since we train a supervised model to use a set of existing schema labels

to annotate other schema labels, the results are less sensitive to NDWs. Besides,
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the similarity between two schema labels relies on the similarity of corresponding

content rather than the surface form of the label text. Automatch [24] uses machine

learning techniques to automate the schema matching process. Their model acquires

probabilistic knowledge stored in an attribute dictionary which characterizes differ-

ent attributes by a set of possible values and their probability estimates. Actually,

this method is similar to our baseline method which characterizes a column by its

bag-of-Words representation. As mentioned by the authors, there could be endless

possible values for a column, especially for those whose data types are continuous

variables. Therefore, instead of considering each column value as a feature, we con-

sider each character of each column value as a feature. We also explore other higher

level features from column content and better characterize different schema labels.

In recent decades, a large number of datasets have been published in differ-

ent data repositories and it becomes an infeasible task to manually link different

datasets. Under this context, data linking has become an important task which aims

to automatically interlink datasets and facilitate their reuse. Nikolov et al. [182, 183]

present a keyword-based method with two main steps. In the first step, they use a

subset of labels in the dataset as keywords to search for potentially relevant enti-

ties in external data sources. In the second step, they filter out irrelevant datasets

by measuring semantic similarities used in ontology matching techniques. Leme

et al. [141] propose a probabilistic method for Linked Data datasets. For a set of

known datasets, they first construct a directed graph from the metadata to describe

their connections. Then given a new dataset, they rank those datasets given a rank

score function. A similar graph-based method is proposed by Lopes et al. [154]

which treats dataset linking as a link prediction problem in social network. Ellefi et

al. [22] propose a recommendation approach for data linking. They adopt the notion

of dataset profiles, where a dataset is characterized as its textual descriptions and

a set of schema labels. Therefore, given a source dataset, a cluster of comparable

datasets can be retrieved based on their semantic similarities to a source dataset

and each dataset can be ranked by tf-idf cosine similarity. A similar approach is

proposed in Ben Ellefi et al. [21], where a topic-dataset bipartite graph is produced

during the topic modeling process; thus a dataset can be represented as a set of
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topics and a topic can be modeled as a set of significant datasets. Therefore a

candidate dataset can be interlinked based on connectivity within the topic-profiles

graph. In de Oliveira et al. [73], the authors propose a user feedback-based approach

to incrementally identify new datasets for domain-specific linked data applications.

They first filter datasets according to the application queries and then use user feed-

back to analyze the relevance of candidate datasets. As pointed out by Nikolov et

al. [182], finding the degree of overlap among datasets is critical for data linking.

Schema label prediction can be a potential solution to increase the connectivity of

heterogeneous datasets by recommending a dataset with schema labels that have

appeared in other datasets.

As embedded data on web pages, Web tables take an important role in appli-

cations like knowledge base construction [304, 232, 220] and question answering

[148, 200]. Therefore, it becomes crucial to recover semantics of Web tables. There

are three main tasks in semantic table interpretation [307]: 1) annotate columns in

a table with semantic concepts; 2) identify the semantic relations between columns;

and 3) cell disambiguation by linking them to entities in a knowledge base. Among

the three tasks, the first task is the closest to our work. TableMiner [307] uses

features from context inside and outside of the table to help annotate columns con-

taining entity mentions. Venetis et al. [258] leverage a database to attach a class

label to a column if a sufficient number of the values in the column are identified with

the corresponding label in the database. Wang et al. [263] use Probase to annotate

a Table with related concepts. Similarly, a large number of works [245, 175, 174]

also make use of knowledge bases to interpret Web Tables.

Different from Web tables, real-world datasets usually do not have enough con-

text such as surrounding paragraphs or semantic markups which are often inserted

in the web page. Moreover, there are few entities that can be linked to a knowledge

base since the concepts contained in a dataset are usually too narrow (e.g., street

names on a map) or too broad. The method proposed in this chapter only uses

generic features extracted from the datasets and therefore only annotates columns

with labels from the datasets rather than concepts from other resources.
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Chapter 5

Schema Label Generation

Enhanced Search for Datasets

In Chapter 4, we proposed a feature-based method to generate schema labels for

datasets. In this chapter, we investigate how generated schema labels can be used

in dataset search. We first propose a novel schema label generation model which

generates possible schema labels based on dataset table content. We incorporate

the generated schema labels into a mixed ranking model which not only considers

the relevance between the query and dataset metadata but also the similarity be-

tween the query and generated schema labels. To evaluate our method on real-world

datasets, we create a new benchmark specifically for the dataset retrieval task. Ex-

periments show that our approach can effectively improve the precision and NDCG

scores of the dataset retrieval task compared with baseline methods. We also test

on a collection of Wikipedia tables to show that the features generated from schema

labels can improve the unsupervised and supervised web table retrieval task as well.

5.1 Introduction

Dataset retrieval is receiving more attention as people from different fields and

domains start to rely on datasets for their work. There are many data portals with
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the purpose of effective and efficient data management and data sharing, such as

data.gov1, datahub2 and data.world3. Most of those data portals use CKAN4 as

their backend. However, there are two problems of dataset search engines using

such infrastructure: First, ranking performance relies on the quality of metadata of

datasets, while many datasets lack high quality metadata; second, the information

in the metadata may not satisfy the user’s information need or help them solve their

task [47]. A user may not know the organization of a potentially relevant dataset,

or the tags data publishers provide with a dataset. Such information can hardly be

used for dataset ranking.

In this chapter, we focus on the problem of dataset retrieval where dataset con-

tent is in tabular form, since tabular data is widely-used and easy to read and

write. As illustrated in Fig. 5.1, a dataset consists of a data table (dataset content)

and metadata. A data table usually has one header row, followed by one or more

data rows. The header row consists of a list of schema labels (attribute names)

whose actual values are stored in data rows. Metadata usually includes title and

description of the dataset.

Schema labels, which represent high-level concepts, are underutilized if we di-

rectly score them with a user query. Consider the example in Fig. 5.1; the vocabulary

of schema labels could be very different from other fields and user queries. “Loca-

tionAbbr”, standing for “Location Abbreviation”, is unlikely to appear in a user

query so this dataset is less likely to be recalled. However, we can enhance this

dataset by generating schema labels such as “place” and “city” appearing in other,

similar datasets, which could provide a better soft-matching signal with respect to

a user query, and therefore increase the chance that it can be recalled.

In the rest of this chapter, we first propose a new method for schema label

generation. We learn latent feature representations of schema labels automatically

by jointly decomposing the dataset-schema label interaction matrix and schema

label-schema label interaction matrix. Then we propose a framework for enhancing

1data.govhttps://www.data.gov/
2http://datahub.io/
3https://data.world/
4https://docs.ckan.org/
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Figure 5.1: The structure of a dataset. Metadata includes the title and any description.
A trained schema label generator is used to generate additional schema labels
(green part) from similar data tables.

dataset retrieval by schema label generation to address the problem that schema

labels are not effectively used by existing dataset search engines. We create a new

public benchmark5 based on federal (U.S.) datasets and use it to demonstrate the

effectiveness of our proposed framework for dataset retrieval. We additionally con-

sider a web table retrieval task and demonstrate that the features generated from

schema labels can be effective for supervised ranking.

5.2 Methods

In this section, we introduce the framework of schema label enhanced dataset re-

trieval. As illustrated in Fig. 5.2, our framework has two stages: in the first stage,

we first train a schema label generator with the method proposed in Section 5.2.1

and use it to generate additional schema labels for all the datasets; in the second

stage, we use a mixed ranking model to combine the scores of schema labels and

other fields for dataset ranking. In the following subsections, we present a detailed

5Available via https://github.com/Zhiyu-Chen/ECIR2020-dataset-search
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illustration of the two stages.

Figure 5.2: The proposed schema label enhanced dataset retrieval framework. The green
blocks indicate generated schema labels for different datasets.

5.2.1 Schema Label Generation

We propose to improve dataset search by making use of generated schema labels,

since these can be complementary to the original schema labels and especially valu-

able when they are otherwise absent from a dataset.

We treat schema label generation as a multi-label classification problem. Let

L = {l1, l2, ..., lk} denote the labels appearing in all datasets and D = {(xi,yi)|1 ≤
i ≤ n} denote the training set. Here, for each training sample (xi,yi), xi is a d-

dimensional feature vector of column i which can be calculated from data rows [54] or

learned from matrix factorization proposed later in this section. yi is k-dimensional

vector [yi1, y
i
2, ..., y

i
k] and yij = 1 only if xi is relevant to label lj, otherwise yij = 0.

Our objective is to learn a function that models P (l|xi), (l ∈ L). To generate m

schema labels for column i, we can select the top m labels Lm by:

Lm = arg max
l∈Lm⊆L

P (l|xi)
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We could also generate schema labels by selecting a probability threshold θ:

Lm = {l ∈ L|P (l|xi) ≥ θ}

In practice, we could first generate the top m schema labels and filter out those

results with a probability lower than the threshold.

In Chapter 4, we proposed to predict schema labels based on curated features

of data values. Instead of designing curated features for schema labels, we consider

learning their representations in an automated manner. Inspired by collaborative

filtering methods in recommender systems, we model each dataset as a user and each

schema label as an item. Then a dataset with a schema label can be considered as

positive feedback between a user and an item. By exploiting the user-item co-

occurrences and item-item co-occurrences, we can learn the latent representations

of schema labels. In the following, we show how to construct a preference matrix in

the context of schema label generation and how to learn the schema label features.

Preference Matrix Construction. With m data tables and n unique schema

labels, we can construct a dataset-column preference matrix Mm×n, where Mup is 1

if dataset u contains schema label p.

Matrix Factorization. MF [126] decomposes M into the product of Um×k and

P k×n where k < min(m,n). UT can be denoted as (α1, ..., αu ..., αm) where αu ∈ Rk

represents the latent factor vector of dataset u. Similarly, P T can be denoted as

(β1, ..., βp ..., βn) where βp ∈ Rk represents the latent factor vector of schema label

p. Since the preference matrix actually models the implicit feedback, MF optimizes

the following objective function:

Lmf =
∑
u,p

cup(Mup − αT
uβp)

2 + λα
∑
u

∥αu∥2 + λβ
∑
p

∥βp∥2 (5.1)

where cup is a hyperparameter tuned to balance the non-zero and zero values since

M is a sparse matrix. λα and λβ are regularization parameters that adjust the

importance of regularization terms
∑

u∥αu∥2 and
∑

p∥βp∥2.
Label Embedding. Recently, word embedding techniques (e.g., word2vec
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[167]) have been valuable in natural language processing tasks. Given a sequence

of words, a low-dimensional continuous representation called word embedding can

be learned for each word. Word2vec’s skip-gram model with negative sampling

(SGNS) is equivalent to implicitly factorizing a word-context matrix, whose cells

are the pointwise mutual information (PMI) of the respective word and context

pairs, shifted by a global constant [142]. The PMI between word i and its context

word j is defined as:

PMI(i, j) = log
P (i, j)

P (i) × P (j)
= log

#(i, j) × |D|∑
j #(i, j) ×∑

i #(i, j)

where #(i, j) is the number of times word j appears in the context window of word

i and |D| is the total number of word-context pairs. Then, a shifted positive PMI

(SPPMI) of word i and word j is calculated as:

SSPMI(i, j) = max{PMI(i, j) − log(k), 0} (5.2)

where k is the number of negative samples of SGNS. Given a corpus, matrix MSPPMI

can be constructed based on equation (5.2) and factorizing it is equivalent to per-

forming SGNS.

A schema label exists in the context of other schema labels. Therefore, we

perform word embedding techniques to learn the latent representations of schema

labels. However, we do not consider the order of schema labels. Therefore, given

a schema label, all other schema labels which come from the same data table are

considered as its context. With the constructed SSPMI matrix of co-occurring

schema labels, we are able to decompose it to learn the latent representations of

schema labels.

Joint Learning of Schema Label Representations. Schema label represen-

tations learned from MF capture the interactive information between datasets and

schema labels, while the word2vec style representations explain the co-occurrence

relationships of schema labels. We use the CoFactor model [146] to jointly learn
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schema label representations from both dataset-label interaction and label-label in-

teraction:

L =

MF︷ ︸︸ ︷∑
u,p

cup(Mup − αT
uβp)

2

+

schema label embedding︷ ︸︸ ︷∑
MSPPMI

pi ̸=0

(MSPPMI
pi − βT

p γi − bp − ci)
2

+ λα
∑
u

∥αu∥2 + λβ
∑
p

∥βp∥2 + λγ
∑
i

∥γi∥2

(5.3)

From the objective function we can see the schema label representation βp is shared

between MF and schema label embedding. γi is the latent representation of context

embedding. bp and ci are the schema label embedding bias and context embedding

bias, respectively. The last line of Equation 5.3 incorporates regularization terms

with different λ controlling their effects. We use the vector-wise ALS algorithm [289]

to optimize the parameters.

Schema label generation. After obtaining the jointly learned representations

of schema labels, we can use them as features for schema label generation. In this

chapter, we use the concatenation of schema label representations introduced here

and the curated features proposed by Chen et al. [54] to construct each xi. Any

multi-label classification models can be used to train the schema label generator and

in this chapter we choose Random Forest.

5.2.2 The Mixture Ranking Model

Based on the schema label generation method proposed above, we index the gen-

erated schema labels for each dataset. Now, each dataset has the following fields:

metadata, data rows, schema labels and generated schema labels. A straightforward

way to rank datasets is to use traditional ranking methods for documents.

Zhang and Balog [299] represent tables as single field documents or multifield

documents for table retrieval task. For single field document representation, a
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dataset is treated as a single document by concatenating the text from all the fields.

Then traditional methods such as BM25 can be used to to score the dataset. For

multifield document representation, each field is scored independently against the

query and a weighted sum is used for ranking.

In our Schema Label Mixed Ranking (SLMR) model, we score schema

labels differently from other fields. The focus of our work is to learn how schema

labels, data rows and other metadata may differently influence dataset retrieval

performance. Note that, for simplicity, we consider the other metadata (title and

description) as a single text field, since title and description are homogeneous com-

pared with schema labels and data rows. Therefore, we have the following scoring

function for a dataset D:

score(q,D) =
∑

i∈{text,data}

wi × scoretext(q, Fi) + wl × scorel(q, Fl) (5.4)

where Ftext denotes the concatenation of title and description, Fdata denotes the data

table, and Fl denotes the generated schema labels. Each field has a corresponding

weights. Ftext and Fdata have the same scoring function scoretext while Fl has a

different scoring function scorel. For Ftext and Fdata, we can use a standard scoring

function for normal documents. In the experiments, we use BM25 as scoretext.

Due to the existence of a large number of non-dictionary words in schema labels

[54] that would otherwise be outside of the vocabulary of a word-based embed-

ding, we represent schema labels and query terms using fastText [28] in scorel,

since such word embeddings are calculated from character n-grams instead of terms.

To score the schema labels with respect to a query, we use the negative Word

Mover’s Distance (WMD) [131]. WMD measures the dissimilarity between two text

documents as the minimum amount of distance that the word embeddings of one

document need to “travel” to reach the word embeddings of another document.

So scorel(q, Fl) = −wmd(fasttext(q), fasttext(Fl)) reflects the semantic similarity

between a query and schema labels.
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Table 5.1: NDCG@k and Precision@k of different models on dataset retrieval. The su-
perscript + shows statistically significant improvements for our SLMR model
over other single and multifield document ranking models. T means title, D
means description, DT means data table, G means generated schema labels.

Method Used Fields NDCG@5 @10 @20 @50 P@5 @10 @20 @50

SDR T+D 0.8920 0.8490 0.8222 0.8121 0.4122 0.3652 0.3452 0.3585
SDR DT 0.7378 0.7036 0.6964 0.7107 0.2856 0.2974 0.2931 0.3122
SDR T+D+DT 0.8435 0.7954 0.7763 0.7785 0.2574 0.2870 0.3170 0.3357
MDR T+D+DT 0.9285 0.8874 0.8683 0.8631 0.4086 0.3612 0.4026 0.3767
SLMR T+D+G 0.9293+ 0.8898 0.8722+ 0.8662 0.5000+ 0.4388+ 0.4000 0.3761
SLMR T+D+DT+G 0.9169 0.8808 0.8680 0.8555 0.5000+ 0.4345+ 0.4013 0.3783

5.3 Experiments

5.3.1 Evaluation Metrics

We evaluate dataset retrieval performance over a range of metrics: Precision at

k and Normalized Discounted Cumulative Gain (NDCG) at k [113]. To test the

significance of differences between model performances, we use paired t-tests with

significance at the p = 0.01 level.

5.3.2 Baselines

We first present the baseline retrieval methods.

Single-field document ranking (SDR). A dataset is considered as a single

document. We use BM25 to score the concatenation of title and description, the

text of the data table and the concatenation of all of them. By comparing the three

results, we can learn about field level importance for dataset retrieval. Parameters

are chosen by grid search.

Multifield document ranking (MDR). By setting wl = 0, Eq. (5.4) degener-

ates to the Mixture of Language Models [187]. BM25 is also used here as scoretext()

in order to have a fair comparison with other methods. To optimize field weights,

we use coordinate ascent. Finally, smoothing parameters are optimized in the same

manner as single-field document ranking.
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5.3.3 Experimental Results

In this section, we examine the following research questions:

Q1 Does data table content help in dataset retrieval?

Q2 Do generated schema labels help in dataset retrieval?

Q3 Which fields are most important for the dataset retrieval task?

We first obtain features of schema labels as described in Section 5.2.1 and the

number of latent factors is set to 40. Then we train a Random Forest with the

learned schema label features. The scikit-learn implementation of Random Forest6

is used with default parameters except the number of trees is set to 25. In practice,

we could choose any multi-label classifier. For each column, we select the top 10

generated schema labels and filter those with probability lower than 0.5. For each

dataset, we index the generated schema labels as an additional field. Table 5.1

summarizes the NDCG at k and Precision at k of different models. Note that,

for Schema Label Mixed Ranking (SLMR), we trained three different models and

the weights of used fields were forced to be non-zero in order to study the proposed

research questions. The weights of used fields for multifield document representation

are also set non-zero when optimizing the parameters.

From the results of single-field document ranking, we can see that only utilizing

the data table for ranking leads to the worst performance. Scoring on the concate-

nation of title and description achieved the best results, which indicates that title

and description are more important than the data table for ranking a dataset (Q3).

Treating all fields of a dataset as a single-field document provides performance be-

tween the previous two models. This result is expected since the length of data

tables are usually much larger than titles and descriptions, and therefore dominate

the table representation.

By comparing the results of single-field and multifield document ranking, we

observe that the combination of the scores of data table, title and description could

6http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifer.html
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improve NDCG@k. Though NDCG@k decreases when k increases, the relative

improvement against single-field document ranking are more significant. In contrast,

for Precision@5, Precision@10, single-field document ranking performs better than

multifield document ranking, though the differences are small. So for Q1, under

the setting of multifield document ranking, the content of the data table could help

NDCG, but not help Precision of dataset retrieval results.

Without scoring data tables, our proposed schema label mixed ranking approach

achieves the highest NDCG on all the rank cut-offs, which indicates that the gener-

ated schema labels can be useful to improve the NDCG of dataset retrieval results

(Q2). Though Precision@20 of multifield document ranking are higher than our

proposed model, the difference is no more than 0.4% (p value > 0.9). Significantly,

our model outperforms by 21.3% for Precision@5 (0.5−0.4122
0.4122

) and by 20.1% for Pre-

cision@10 (0.4388−0.3652
0.3652

) than the best baseline methods (p value < 0.01). Whether

data tables are scored or not, Precision@k is not significantly different for schema la-

bel mixed ranking. Therefore, under the setting of schema label mixed ranking, data

tables make little contribution in this scenario (Q1). One possible reason could be

that data tables collected from data.gov contain large quantities of numerical values

and will rarely be used to match user queries.

If a schema label mixed ranking model scores only on titles and descriptions

(wl = 0), it is equivalent to single-field ranking model scoring on titles and descrip-

tions. Therefore, we can compare the results in first and fifth rows in Table 5.1.

With generated schema labels, the ranking model can have a higher performance on

dataset retrieval task (Q2).

5.3.4 Schema Label Generation Enhanced Search for Web

Tables

The task of dataset search is similar to Web table search since both tasks use table

structure to represent data. The difference is that a large amount of Web tables are

entity focused and contain many named entities that can be linked to a knowledge

base. However, our datasets collected from the data.gov data portal contain few
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Table 5.2: Supervised ranking results on table retrieval.

Method NDCG@5 @10 @15 @20

STR[298] 0.6366 0.6571 0.663 0.6632
Schema Label Features 0.4489 0.5201 0.534 0.5347
STR + Schema Label Feat. 0.6530 0.6728 0.6789 0.6761

useful entities in the table. Therefore, a lot of methods designed for Web table

ranking cannot be applied to dataset search. The semantic table retrieval (STR)

method proposed by Zhang and Balog [298] relies on features from knowledge bases

(bag of entities) which are not generally available for the scenario of dataset search.

However, the schema label generation based method can be applied to table search.

Thus, we performed additional experiments to show the performance of our method

for the table search scenario.

We first generate schema labels for the table corpus shared by Zhang and Balog

[298] using the method proposed in Section 5.2.1. Then we append five additional

features to their proposed features7 based on schema labels. Each feature is one

type of semantic similarity between query and schema labels. Four features are

calculated using the measurement proposed by Zhang and Balog (one early fusion

feature, three late fusion features) and the last feature is the negative of Word

Mover’s Distance. Finally, like Zhang and Balog, we use Random Forest to perform

pointwise regression and the final reported results are averaged over five runs of

5-fold cross-validation and shown in Table 5.2.

We can see that schema label features along cannot outperform STR. But com-

bining them results in improvement. However, by calculating the normalized feature

importance measured in terms of Gini score, we find that for STR with schema label

features, WMD based measurement contributes the most among all the semantic

features. Thus it demonstrates that the schema labels can be valuable for the table

retrieval task as well.

7https://github.com/iai-group/www2018-table/tree/master/feature
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Table 5.3: Unsupervised ranking results on table retrieval.

Used Fields NDCG@5 @10 @15 @20

text 0.3724 0.3891 0.4009 0.4178
text + data table 0.3901 0.4042 0.4422 0.4686
text + data table + generated labels 0.4006 0.4118 0.4495 0.4766
text + data table + original labels 0.3930 0.4055 0.4457 0.4709
text + original labels 0.3785 0.3934 0.4110 0.4283
text + generated labels 0.3808 0.3955 0.4064 0.4197

Notably, in this table corpus, many tables lack much table content but con-

tain rich text descriptions, which could be unfair for schema label generation-based

methods. While for dataset search, each table has values but may lack high quality

dataset descriptions. We believe that our schema label generation method can out-

perform STR in the scenario where text descriptions provide less useful information

than the table itself.

We also show unsupervised ranking results with Equation 5.4 in Table 5.3. Unlike

Zhang and Balog [298], we consider page title, section title and caption as a single

text field, in order to reduce the number of hyperparameters (field weights). The

results show that generated labels are more effective than original labels for table

ranking. It is unsurprising because generated labels often include not only original

labels but also additional labels that can benefit the ranking model. We also notice

that including the data table field achieves better results than not scoring it, which

is contrary to the results of dataset ranking. It is also expected since WikiTables are

entity-focused and include a lot of text information while data tables from data.gov

include more numeric values.

5.4 Summary

In this chapter, we have proposed a schema label enhanced ranking framework for

dataset retrieval. The framework has two stages: in the first stage, a schema label

generator is trained to generate additional schema labels for each dataset column;
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in the second stage, given a user query, datasets are ranked by their original fields

together with generated schema labels. Schema label generation is treated as a

multi-label classification task in which each column of a dataset is associated with

multiple schema labels. Instead of using hand-curated features, we learn the latent

feature representations of schema labels by a CoFactor model in which the dataset-

schema label interactions and schema label-schema label interactions are captured.

With the schema label mixed ranking model, the traditional ranking scores for text

fields (title, description, data rows) and word embedding-based scores for generated

schema labels can be used to rank the datasets.

We created a new benchmark to evaluate the performance of dataset retrieval.

The experimental results demonstrate our proposed framework can effectively im-

prove the performance on the dataset retrieval task. It achieved the highest NDCG

on all the rank cut-offs compared with all baseline methods. We also apply our

method to the web table retrieval task which is similar to dataset search and find

that the features generated from schema labels can help in supervised ranking as

well.

5.5 Bibliographic Notes

Related work in this chapter is in two topics: retrieval of multifield documents and

recommendation systems.

Information retrieval for structured documents has been studied in the past.

Considering the structure of a document when designing retrieval models can usually

improve retrieval results. It has been shown that combining similarities and rank-

ings of different sections can lead to better performance [275]. Ogilvie et al. [187]

presents a mixture-based language model combining different document represen-

tations for known-item search in structured document collections.They find that

document representations that perform poorly can be combined with other repre-

sentations to improve the overall performance. Robertson et al. [223] introduces

BM25F which is an extension of BM25 and combines original term frequencies in
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the different fields in a weighted manner. A field relevance model is proposed by

Kim and Croft [121] to incorporate relevance feedback for field weights estimation.

There are also supervised methods for multifield document ranking. A Bayesian

networks-based model for structured documents was proposed by Piwowarski and

Gallinari [202]. Kim et al. [122] proposed a probabilistic model for semi-structured

document retrieval. They calculate the mapping probability of each query term and

use it as a weight to combine the language models estimated from each field. Svore

et al. [244] developed LambdaBM25, a machine learning approach to BM25-style

retrieval that learns from the input attributes of BM25 and performs better than

BM25F for multifield document ranking. Zamani et al. [291] proposed a neural

ranking model that learns an aggregated document representation from field-level

representations and then uses a matching network to produce the final relevance

score. In this chapter, a dataset consists of multiple components (as described in

Figure 5.1), and therefore dataset search can be treated as a multifield document

retrieval task.

Recommendation systems have been widely used in e-commerce applications.

There are three types of recommendation algorithms: content-based filtering, col-

laborative filtering and hybrid filtering. For content-based filtering [17, 196], a

recommendation is made based on user profiles and item descriptions. An item is

recommended if it is mostly related to the positively rated items. To build collab-

orative filtering recommendation system, data about user activities is required in

order to construct the user-item preference matrix. Based on the preference matrix,

it learns to recommend items from the most similar users. Matrix Factorization

(MF) is widely used in collaborative filtering. Basic MF models (e.g., [126, 169])

learn the latent features of users and items. The dot product result of a user latent

feature and an item latent feature models the rating score for a given user-item pair.

Hybrid filtering [98, 189] combines content-based filtering and collaborative filtering

which could help overcome cold start and the sparsity problem. In this chapter, we

borrow from recommendation methods. By modeling the dataset-label interaction

and label-label interaction, we learn the latent features for each schema label.
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Chapter 6

Dataset Search with Pretrained

Language Models

In this chapter, we use the deep contextualized language model BERT for the task

of ad hoc table retrieval. Pretrained contextualized language models such as BERT

have achieved impressive results on various natural language processing benchmarks.

Benefiting from multiple pretraining tasks and large scale training corpora, pre-

trained models can capture complex syntactic word relations. We investigate how

to encode table content considering the table structure and input length limit of

BERT. We also propose an approach that incorporates features from prior litera-

ture on table retrieval and jointly trains them with BERT. In experiments on public

datasets, we show that our best approach can outperform the previous state-of-

the-art method and BERT baselines with a large margin under different evaluation

metrics.

6.1 Introduction

As an efficient way to organize and display data, tables are broadly used in different

applications: researchers use tables to present their experimental results; companies
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store information about customers and products in spreadsheets; flight informa-

tion display systems in the airports show flight schedules to passengers in tables.

According to Cafarella et al. [36], there are more than 14.1 billion tables on the

Web. Among those tables, many are very informative which means they include

relations and attributes of real-world entities, and have been used for a variety of

downstream tasks. For example, tables like Wikipedia infoboxes have been used to

construct knowledge bases since they are of high quality and consistent structure

[13]. Data-to-text models take tables from specific domains as input and transform

them into fluent natural language sentences such as sports news [276] and product

descriptions [44]. With structure information and metadata, tables store factual

knowledge and therefore are also used to build question answering (QA) systems

[241].

Position Breed Registrations

1 Labrador Retriever 45,700

2 English Cocker Spaniel 20,459

… … …

Search Query: dog breeds

(a) An example of a returned table in
which one column is relevant to the
query.

City Country Year …

Athens Greece 1896 …

… … … …

Beijing China 2008 …

… … … …

Search Query: 2008 Beijing Olympics

(b) An example of a returned table in
which one row is relevant to the
query.

Rank Name Sex …

1 Harry Elliott M …

2 Abe Coleman M …

3 Angelo Savoldi M …

… … … …

Search Query: professional wrestlers

(c) An example of a returned table in
which all cells are relevant to the
query.

Figure 6.1: Three examples of returned tables reflecting different relevant unit types.

The table retrieval task is related but different from the table QA task. Both
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of them aim to satisfy users’ information need. QA models usually take a natural

language question as input and aim to find one or more specific answers. However,

queries for table retrieval systems may have ambiguous intent and usually consist of

several keywords. The returned tables from a table retrieval system in Figure 6.1a

and 6.1c can be both positive samples for a table QA system. A user may want to

know the list of all dog breeds in Figure 6.1a and the 2nd column of the table provides

the relevant and accurate information. A user may ask the profiles of professional

wrestlers in Figure 6.1c and the returned table contains that information. For this

example, all the cells provide informative content for the user. The 2nd column tells

who are professional wrestlers and the other columns provide context information.

However, in Figure 6.1b, the query has more ambiguous intent. The user may ask

the results of 2008 Beijing Olympic Games which means the returned table is a

negative sample for a QA system. If a user does not have a clear question and just

wants to explore what he/she could find, then the returned table is a positive sample

for a table retrieval system. For this example, the row that includes “Beijing” is

relevant and the remaining rows are less useful. We note that the unit of relevant

information in the table can be rows, columns or cells. Based on this observation,

we propose different methods to select row items, column items and cell items from

a table.

In this chapter, we consider the task of ad hoc table retrieval where given a

keyword query, a list of ranked tables are returned. In previous studies of table

retrieval, various features are used. Word level, phrase level and sentence level fea-

tures are calculated by Sun et al. [242]. Zhang et al. [299] use 23 hand-crafted

features and 16 embedding based features to train a random forest for pointwise

table ranking. Recently, the pre-trained language model BERT [77] and its variants

like RoBERTa [153] have achieved impressive results on different natural language

understanding tasks [261]. The self-attention structure and pre-training tasks enable

BERT to learn complex linguistic features from a large corpus. Researchers from IR

communities have applied BERT to ranking tasks and achieved new state-of-the-art

results on multiple benchmarks [284, 285, 159, 185]. Here we apply BERT to the

ad hoc table retrieval task. In previous work, the input of BERT is either a single
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sequence or sequence pairs. The question of how to effectively encode a structured

document into a BERT representation has not been previously explored. We con-

struct input for BERT considering the structure of a table and then combine BERT

features with other table features together to treat table retrieval as a regression

task.

We summarize our contributions as the following:

• We propose three content selectors to encode different table items into the

fixed-width BERT representation.

• We experiment on multiple datasets and demonstrate that our method achieves

the best results and generalizes to other domains.

• We analyze the experiment results and discuss why the max salience selector

for row items performs the best among all other methods.

• We analyze the fine-tuned BERT attention maps and embeddings, and explain

what information is captured by BERT.

• We propose a new test collection for Web table retrieval which has not only

relevance judgments of query-table pairs, but also the relevance judgments of

query-table context pairs with respect to a query.

6.2 Prerequisites

6.2.1 BERT

BERT [77], consisting of L layers of Transformer blocks, is a deep contextual lan-

guage model which has achieved impressive results on various natural language pro-

cessing tasks. Given a sequence of input token embeddings X = {x1,x2, ...,xn}, the

Transformer block at layer l outputs the contextualized embeddings (hidden states)

of input tokens H l = {hl
1,h

l
2, ...,h

l
n}. The Transformer block is originally proposed

by Vaswani et al. [256] and each has the same structure: multi-head self-attention
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followed by a feed-forward network.

Transformerl(H
l−1)

= FFN(MH Attn(H l−1))

= FFN(W [Attn1(H
l−1), ..., Attnm(H l−1)])

(6.1)

Multi-head self-attention aggregates the output from m attention heads.

When using BERT for downstream tasks, special tokens ([SEP] and [CLS]) are

added into the input. For single sequence classification/regression tasks, [CLS] and

[SEP] are added to the beginning and end of the input sequence. For sequence-pair

classification/regression, the two input sequences are concatenated by [SEP] and

then processed the same as single sequence tasks. The embedding of [CLS] from the

last Transformer block is fed into a final classification/regression layer.

6.2.2 BERT Characteristics

Limit on input length. BERT cannot take input sequences longer than 512

tokens. In previous studies of BERT for long document tasks like text classification

[46], the input tokens are truncated. Better ways to preprocess the inputs beyond

length limitation are worth studying since trivially throwing away part of the inputs

could lose important information. Transformer-XL [70] solves the fixed-length issue

with recursion and relative position encoding. However, this method requires further

pre-training and is only evaluated on text generation tasks. Though we focus on

table retrieval, our methods to alleviate the long sequence issue are off-the-shelf

without any further training and can also be applied to other domains.

The secrets behind special tokens. Before BERT was proposed, neural

models for NLP and IR tasks usually take the embeddings of all input tokens for

training. While for BERT and its variants, fine-tuning on the target tasks only

requires an additional softmax layer on top of the [CLS] embedding from the last

layer and the remaining embeddings are not used. The function of [SEP] is often

disregarded, as when constructing the input of BERT, the role of [SEP] is just a
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symbol to mark the end or delimiter of a sequence. Recently, researchers begin

to analyze why BERT is so effective for different tasks. Clark et al. [61] suggest

that [SEP] might be used as a “no-op”sometimes and does not aggregate segment-

level information. However, Ma et al. [157] show that using the embedding of [SEP]

instead of [CLS] can also achieve comparable results, which indicates that [SEP] also

learns contextualized information of the sequence. In our experiments, we study the

relationship between special tokens and other input tokens in order to explore what

BERT embeddings learn after fine-tuning on the target task.

6.3 Methods

Here we define the task and then describe our method in detail.

6.3.1 Task Definition

In ad hoc table retrieval, given a query q ∈ Q usually consisting of several key-

words q = {k1, k2, ..., kl}, our goal is to rank a set of tables T = {t1, t2, ..., tn} in

descending order of their relevance scores with respect to q. A table is a set of cells

arranged in rows and columns like a matrix. Each cell could a be single word, a

real number, a phrase or even sentences. The first row of a table is the header row

and consists of header cells. In practice, tables from the Web could have more com-

plex structures [65]. In this chapter, we only consider tables that have the simplest

structure since they are the most commonly used. Each table could have context

fields {p1, ..., pk} depending on the source of the table. For example, a table from

Wikipedia can have a caption, its section title and page title.

6.3.2 BERT for Table Retrieval

We show the overview of our framework which includes four components in Fig-

ure 6.2. The content selector extracts informative items (rows, columns or cells)

from a table. BERT is used to extract features fbert from the query, correspond-

ing table context fields, and selected items. A neural network is used to transform
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Figure 6.2: Overview of the proposed model. Blue blocks are model components. Orange
blocks are raw text of the input. Green blocks are either manually curated
features or outputs from models (BERT and MLP).

additional features va (if provided) to fa. Then fbert and fa are concatenated into

a single feature vector. This vector is fed into a regression layer to predict the

relevance score. In the rest of this section, we describe the model components in

detail.

Content Selector

As previously mentioned, BERT can only take input sequences that are no longer

than 512 tokens. But for many tasks including table retrieval, the lengths of inputs

can easily exceed that limit. To deal with the limit for various downstream tasks,

inputs are typically truncated into valid lengths or multiple instances for a single

document are created [132, 284]. In open-domain question answering and machine

reading comprehension, a single instance usually involves long documents or multiple
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documents, and the proposed methods usually have a select-then-extract two-stage

schema [272, 106, 149, 136, 274]. Inspired by those works, we propose a select-

then-rank framework for ad hoc table retrieval. First, we select a set of potentially

informative items from a table. Then we pack the context fields of a table and its

selected items as the final table representation. Finally we extract BERT features

fbert for all the tables based on the new constructed representation.

In the ad hoc table retrieval task, we notice that there are three types of relevant

tables in terms of the unit of the relevant information:

• One or more columns are relevant to the query. For example, only the second

column is relevant to the query in Figure 6.1a;

• One or more rows are relevant to the query. For example, only the row that

includes “Beijing” is relevant to the query in Figure 6.1b.

• The relevant information is spread over the whole table. For example, in

Figure 6.1c, the table includes a list of records about the entities asked by the

query.

Therefore, we slice a table t into a list of items {c1, ..., cm}, i.e., a list of rows,

columns or cells and select the top-ranked items for the final BERT input represen-

tation. Here we propose three methods to measure the salience score of a table item

c:

• Mean Salience: it assumes that the relevance signal can be captured by the

similarity of query representation and item representation. We use the average

word embeddings to represent queries and items respectively.

SALmean(c) = cosine(

∑
w∈c vw

lc
,

∑
k∈q vk

lq
)

• Sum Salience: it assumes relevance signals between every pair of query and

88



item terms are useful for content selection.

SALsum(c) =
∑
k∈q

∑
w∈c

cosine(vk, vw)

• Max Salience: it assumes that only the most salient signal between any pair

of query and item terms is useful for content selection.

SALmax(c) = max
k∈q,w∈c

cosine(vk, vw)

Instead of trivially truncating table information, we rank the items of a table and

keep items with higher salience scores in the front.

Encoding Table for BERT

Given a query q ∈ Q, a table t ∈ T , the context fields {p1, ..., pk} and selected items

of t {c1, ..., cm}, we construct the final input sequence for BERT as

S = [[CLS], q, [SEP ], p1, [SEP ], ..., pk, [SEP ], c1, [SEP ], ..., cm, [SEP ]]

Like Hu et al. [77], we use WordPiece tokenization for input sequences and the

input representation of each token is constructed by summing its token embedding,

segment embedding and position embedding. All the queries share the same segment

embedding and context fields, selected items share another segment embedding. As

illustrated in Section 6.2.1, we use the embedding of [CLS] from the last layer as

BERT features fbert.

Feature Fusion and Prediction

Feature-based methods have shown impressive performance and achieved previous

state-of-the-art results on ad hoc table retrieval [299]. When additional feature

va ∈ Rd for a query-table pair is available, we combine them with BERT features
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fbert by:

fa = vaW1 + b1 (6.2)

where W1 ∈ Rd×d. Then fa and fbert are concatenated into single vector and fed to

the final regression layer.

f = [fa; fbert] (6.3)

score = Regression(f) (6.4)

When only BERT features are available, f equals fbert. A simple linear transfor-

mation is used as regression layer which means Regression(f) = fW2 + b2 where

W2 ∈ R(d+h)×1 and h is the size of BERT hidden states.

Training

We use the pre-trained BERT-large-cased model which consists of 24 layers of Trans-

former blocks, 16 self-attention heads per layer and has a hidden size of 1024. Con-

sidering processing speed, the size of GPU memory, and the fact that BERT is good

for short text tasks, the maximum input length is set to 128. Since the selected

items are at the end of the input (as described in Section 6.3.2) and ranked by their

salience scores with respect to the query, we assume the truncated part will have

the least negative impact with a given length constraint. Considering the dataset

statistics in Table 6.1, we limit the caption to 20 tokens, section title and page title

to 10 tokens each, and table headers to 20 tokens. Since queries are short, we keep

all the query tokens. As a result, we leave about half of the space for table content.

We fine-tune the framework by minimizing the Mean Square Error (MSE) between

model predictions and gold standard relevance scores.1 We train the model with

5 epochs and batch size of 16. The Adam optimizer with learning rate of 1e-5 is

used. We also use a linear learning rate decay schedule with warm-up of 0.1. Our

implementation is based on code from an open source repository.2

1We also tried binary classification to predict relevance probabilities as in Sakata et al. [226]
and found that regression is much better in our scenario.

2https://github.com/huggingface/transformers
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Table 6.1: The length statistics of data provided by Zhang and Balog [299]. The length
is calculated after WordPiece tokenization.

Field Mean Max > 512 > 128
query 3.5 8 - -

caption 4.3 76 - -
page title 5.6 26 - -

section title 3.3 22 - -
header 19.7 729 0.032% 2%

table 549.1 20545 24.2% 65.3%
all 585.5 20605 27.3% 72.4%

6.4 Experiments

In this section, we aim to answer the following research questions:

RQ1: What is the performance gain of BERT with content selection methods, with

respect to state-of-the-art performance?

RQ2: Could BERT with content selection methods outperform state-of-the-art per-

formance without additional features?

RQ3: Which content selection method/item type is the most effective?

6.4.1 Dataset Description

We use the WikiTables dataset created by Zhang and Balog [299] where the previous

state-of-the-art method is proposed. The table corpus is originally extracted from

Wikipedia [27]. The context fields include page title and section title. From Figure

6.1b and Figure 6.1a we can see that the first row of a table usually contains some

high-level concepts and provides informative context. Therefore we also consider the

table header as a context field. When slicing the tables, we still have table headers

included. The queries are sampled from the collections in [35, 259]. In total, they

annotated 3120 query-table pairs. The statistics of the corpus are shown in Table

6.1. We also use the curated features proposed by Zhang and Balog [299] for feature

fusion.
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6.4.2 Experimental Setup

The performance of table retrieval methods is evaluated with Mean Average Preci-

sion (MAP), Mean Reciprocal Rank (MRR) and Normalized Discounted Cumula-

tive Gain (NDCG) at cut-off points 5, 10, 15, and 20. To test significance, we use

a two-tailed paired t-test and use †/‡ to denote significance levels at p =0.05, 0.005

respectively.

Based on Section 6.3.2, we have three strategies to calculate salience scores of

items and three ways to construct items (as a list of columns, rows, or cells) from a

table. We list all the methods settings in Table 6.2. To obtain the salience scores,

we use fastText word embeddings [28].3 Note that a different tokenization approach

is used because fastText is not pre-trained on WordPiece tokenized corpus. We

replace all non-numerical and non-alphabet characters with space and simply split

sequences by space. Following the same experimental setup in Zhang et al. [299],

five-fold cross-validation is used when evaluating different methods. We release our

code on GitHub.4

Table 6.2: The settings of all proposed methods, which use different item types and
content selectors.

Method Name Item type Content Selector

Hybrid-BERT-Row-Sum Row Sum Salience
Hybrid-BERT-Row-Mean Row Mean Salience
Hybrid-BERT-Row-Max Row Max Salience
Hybrid-BERT-Col-Sum Column Sum Salience
Hybrid-BERT-Col-Mean Column Mean Salience
Hybrid-BERT-Col-Max Column Max Salience
Hybrid-BERT-Cell-Sum Cell Sum Salience
Hybrid-BERT-Cell-Mean Cell Mean Salience
Hybrid-BERT-Cell-Max Cell Max Salience

3https://github.com/facebookresearch/fastText/
4https://github.com/Zhiyu-Chen/SIGIR2020-BERT-Table-Search
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Table 6.3: The superscript † shows statistically significant improvements for the method
compared with all other methods.

Method Name MAP MRR NDCG@5 NDCG@10 NDCG@15 NDCG@20

STR 0.5711 0.6062 0.5762 0.6048 0.6102 0.6111
Hybrid-BERT-text 0.6003 0.6321 0.6023 0.6284 0.6322 0.6336
Hybrid-BERT-Rand-Row 0.6056 0.6356 0.6110 0.6294 0.6340 0.6350
Hybrid-BERT-Rand-Col 0.6105 0.6441 0.6094 0.6321 0.6388 0.6392
Hybrid-BERT-Rand-Cell 0.6124 0.6411 0.6117 0.6317 0.6381 0.6386

Hybrid-BERT-Cell-Mean 0.6104 0.6364 0.6148 0.6337 0.6385 0.6388
Hybrid-BERT-Cell-Max 0.6129 0.6410 0.6166 0.6349 0.6391 0.6395
Hybrid-BERT-Cell-Sum 0.6207 0.6473 0.6227 0.6397 0.6450 0.6454
Hybrid-BERT-Row-Mean 0.6196 0.6490 0.6216 0.6406 0.6456 0.6463
Hybrid-BERT-Row-Max 0.6311 0.6673† 0.6361 0.6519 0.6558 0.6564
Hybrid-BERT-Row-Sum 0.6199 0.6487 0.6168 0.6385 0.6436 0.6445
Hybrid-BERT-Col-Mean 0.6108 0.6395 0.6168 0.6340 0.6406 0.6412
Hybrid-BERT-Col-Max 0.6086 0.6324 0.6133 0.6297 0.6357 0.6362
Hybrid-BERT-Col-Sum 0.6131 0.6399 0.6131 0.6308 0.6384 0.6390

6.4.3 Baselines

We implement the following baseline methods:

• Semantic Table Retrieval (STR): This is the method proposed by Zhang

and Balag [299] which is the previous state-of-the-art method. It first repre-

sents queries and tables in multiple semantic spaces. Then multiple semantic

matching scores are calculated based on the representations of queries and

tables. Pointwise regression using Random Forest is used to fit those semantic

features combined with other features. Like the original STR implementation,

we set the number of trees to 1000 and the maximum number of features in

each tree to 3.

• Hybrid-BERT-text: Only context fields are used and the table is not en-

coded except the table headers which are also considered as a context field.

• Hybrid-BERT-Rand-Col: Randomly selecting column items when con-

structing the BERT input.
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• Hybrid-BERT-Rand-Row: Randomly selecting row items when construct-

ing the BERT input.

• Hybrid-BERT-Rand-Cell: Randomly selecting cells from the table when

constructing the BERT input.

For the BERT-based methods, we use the features proposed in [299] as va.

6.4.4 Experimental Results

We summarize our experimental results in Table 6.3. We can see that all BERT-

based models can achieve better results than semantic table retrieval (STR). Even

without encoding the tables, Hybrid-BERT-text can still outperform STR, which

demonstrates that BERT can extract informative features from tables and context

fields for ad hoc table retrieval. Randomly selecting columns, rows and cells have

a marginal improvement on Hybrid-BERT-text, indicating that encoding the table

content has the potential to further boost performance. In addition, the differences

in performance among randomly selecting columns, rows and cells are not statisti-

cally significant. The answer to RQ1 is very straightforward: all BERT based mod-

els with different content selection methods can perform better than the previous

state-of-the-art method. Though the gain of performance is statistically significant

at p = 0.005 level, BERT makes the main contribution, since only encoding context

fields can achieve impressive results.

Next, we discuss the impact of item type and content selector. Comparing the

results in Table 6.3, we observe that in general row item based methods are better

than cell item based methods, and cell item based methods are better than column

item based methods. Among all the methods, Hybrid-BERT-Row-Max achieves the

best results across all metrics compared with all other methods. The improvement

over all other methods is statistically significant at 0.05 level for MRR, and statis-

tically significant at 0.05 level for NDCG@5, NDCG@15 and NDCG@20 except for

Hybrid-BERT-Cell-Sum. It means that selecting rows that have the most significant

signals is an effective strategy to construct BERT input within the length limit. In
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contrast to row items, column selection and cell selection based methods seem to be

less effective. For several cases, content selection strategies for column and cell items

even have worse performance than randomly selecting columns or cells. For example,

Hybrid-BERT-Col-Max has MRR of 0.6324 while Hybrid-BERT-Rand-Col has MRR

of 0.6441. Different from row items, max salience selector does not show superiority

over other selectors for column items and cell items. It is expected that Hybrid-

BERT-Rand-Col has better performance than Hybrid-BERT-Rand-Row, because a

table is less likely to have more columns than rows, which means the probability of

a potential optimal column to be selected is higher than that of a potential optimal

row to be selected. For cell items, the sum salience selector shows marginally better

performance than the other two selectors. And for column items, there is no clear

best content selector but max salience selector seems to be the least effective.

Table 6.4: The setting of our methods where only BERT features are used.

Method Name MAP MRR NDCG@5 NDCG@10 NDCG@15 NDCG@20

STR 0.5711 0.6062 0.5762 0.6048 0.6102 0.6111

BERT-text 0.5958 0.6240 0.5972 0.6206 0.6283 0.6287
BERT-Rand-Row 0.6005 0.6271 0.6063 0.6266 0.6310 0.6314
BERT-Rand-Col 0.6067 0.6400 0.6093 0.6327 0.6374 0.6380
BERT-Rand-Cell 0.6075 0.6358 0.6116 0.6287 0.6362 0.6369

BERT-Cell-Mean 0.6056 0.6331 0.6017 0.6274 0.6340 0.6343
BERT-Cell-Max 0.5967 0.6275 0.6013 0.6209 0.6299 0.6307
BERT-Cell-Sum 0.6149 0.6436 0.6151 0.6345 0.6420 0.6424
BERT-Row-Mean 0.6055 0.6365 0.6064 0.6314 0.6358 0.6363
BERT-Row-Max 0.6277 0.6600 0.6274 0.6465 0.6517 0.6532
BERT-Row-Sum 0.6113 0.6302 0.6077 0.6307 0.6356 0.6370
BERT-Col-Mean 0.6026 0.6318 0.6079 0.6269 0.6334 0.6339
BERT-Col-Max 0.6095 0.6398 0.6109 0.6319 0.6379 0.6385
BERT-Col-Sum 0.6059 0.6257 0.6050 0.6260 0.6339 0.6343

Three types of items are coherent units of the table with different granularities.

A cell is the smallest unit compared with a row item or a column item. Usually, a

column item is longer than a row item depending on the layout of the table. After

manually examining some returned items, we find that cell item based methods
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are more biased towards returning items including query terms, while the methods

based on the other two item types are forced to include some context information.

Taking Figure 6.1c as an example, all the returned items include the term “wrestler”

which appears in the rightmost column that includes a list of short biographies of

professional wrestlers. However, for row items, other context information such as

the names of the wrestlers are forced to be included. Since column items are usually

longer than row items, if the content selector fails to return the most relevant column

item as the first one, the model is less likely to achieve good performance. Based

on our experiment results, we observe that max salience selector with row items has

the best balance between accuracy and robustness, which answers RQ3.

6.5 Discussion

In this section, we continue the discussion of our proposed methods.

6.5.1 Ranking Only with BERT

To answer RQ2, we run the experiments that only use BERT features which means

f equals fbert in Equation 6.3. The results are shown in Table 6.4 where the method

names correspond to the ones in Table 6.3 except the STR baseline and the prefix

“Hybrid-” is removed. In all cases, performance decreases slightly when additional

features are not used. In answer to RQ2, without additional features, all the pro-

posed methods including baselines can outperform STR. Even without encoding ta-

ble content, BERT-text can still achieve good performance which means the context

fields are very important for ad hoc table retrieval. The conclusions are consistent

with Section 6.4.4: sum salience selector is the best for cell items and max salience

selector with row items still performs the best when only BERT features are used.

6.5.2 Generalization to Another Domain

Though we conclude that the max salience selector with row items is the best

method, the conclusion may depend on the corpus. Therefore, we also conduct
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Table 6.5: Results on WebQueryTable dataset.

Method Name MAP

Feature + NeuralNet [242] 0.6718
BERT-Rand-Cell 0.6414
BERT-Row-Max 0.7104

experiments on a dataset from another domain. To do this, we use an open-domain

dataset WebQueryTable5 introduced by Sun et al. [242]. Unlike WikiTables where

all the tables are from Wikipedia, the tables in WebQueryTable are collected from

queried web pages returned by a commercial search engine. In total, 21,113 query-

table pairs are manually annotated and the dataset is pre-split into training (70%),

development (10%) and test (20%). In this scenario, no additional features are

available for this corpus so only BERT features are used. Additionally, table cap-

tion, sub-caption and headers are used as context fields. The preprocessing is the

same with WikiTables. We do not use the development set since we do not search

for hyperparameters. We calculate the MAP scores of our models which are also

reported by Sun et al. [242]. The results of the best BERT baseline method and

the proposed method are shown in Table 6.5. The final results are also consistent

with conclusions in Section 6.4.4—that max salience selector with row items is the

best strategy.6 Therefore, we can see that training BERT on row items with max

salience selector is also an effective strategy for datasets in other domains, which

makes the answers to RQ2 and RQ3 more convincing.

6.5.3 Feature-Based Approach of BERT

In Section 6.4.4, we use the fine-tuning approach that jointly fine-tunes the whole

framework. In the experiment, we tried different methods to incorporate additional

features. For example, we can directly concatenate additional features without any

5https://github.com/tangduyu/Table-Intelligence/tree/master/table-search
6We did not reproduce their method. We assume the results are comparable since the dataset

is pre-split.
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transformation with BERT features and feed the concatenated vector to the regres-

sion layer. We also tried to predict two relevance scores with BERT features and

additional features separately, and then linearly transform them into a weighted

relevance score. However, all of those variants perform worse than BERT-text. It

is possible that BERT performance highly depends on the optimization strategy

and adding other components for joint training can have negative impact on the

fine-tuning process. To avoid such a case, we adapt BERT to a feature-based ap-

proach. First we use the fine-tuning approach to train BERT without additional

features like in Section 6.5.1. Then we optimize the whole framework as in Sec-

tion 6.4.4 except that BERT weights are not updated. The results are shown in

Table 6.6. For the three item types, we only include the results of models using

the best content selectors. All methods have significant improvements compared

with fine-tuned approaches. Among the baselines, Hybrid-BERT-Rand-Col has the

most improvement, which is even better than the best performance of BERT using

content selectors for column items. Hybrid-BERT-Row-Max still achieves the best

performance and the improvements over baselines are statistically significant at the

level of p = 0.005.

So far, we observe that max salience selector with row items is the best strategy

to construct inputs for BERT. In the feature-based approaches, it is more obvious

that sum salience selector is the best one for cell items and mean salience selector

is the best one for column items.

Table 6.6: Results using feature-based approaches. The superscript ‡ denotes statisti-
cally significant improvements over all baseline methods.

Method Name MAP MRR NDCG@5 NDCG@10 NDCG@15 NDCG@20

Hybrid-BERT-text 0.6287 0.6546 0.6171 0.6489 0.6531 0.6536
Hybrid-BERT-Rand-Col 0.6590 0.6722 0.6481 0.6629 0.6692 0.6694
Hybrid-BERT-Rand-Row 0.6139 0.6418 0.6107 0.6345 0.6409 0.6411
Hybrid-BERT-Rand-Cell 0.6195 0.6554 0.6195 0.6382 0.6465 0.6466

Hybrid-BERT-Row-Max 0.6737‡ 0.7139‡ 0.6633‡ 0.6875‡ 0.6924‡ 0.6926‡

Hybrid-BERT-Col-Mean 0.6379 0.6582 0.6229 0.6449 0.6540 0.6542
Hybrid-BERT-Cell-Sum 0.6643 0.6806 0.6529 0.6686 0.6739 0.6740
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6.6 Analysis of BERT Features

Figure 6.3: Middle figure includes all attention maps of a random test set example. Left
figure shows the attention map of head 1 in the last layer. Similar attentions
for [SEP] tokens result in the grid-look. Right figure shows the attention map
of head 5 in the 1st layer with intra-sequence attention pattern. Attention
weights with larger absolute values have darker colors.

Though BERT achieved new state-of-the-art results on various tasks, it is still

unclear what are the exact mechanisms behind its success. In this section, we dive

into the analysis of BERT for the table retrieval task. For illustration purposes,

the results presented in this section are based on the weights of BERT-Row-Max.

However, we observe similar patterns among different BERT-based methods and

therefore the conclusions can also be applied to other methods.

6.6.1 Self-Attention Patterns

Compared to general scenarios where BERT is used for single-sequence or sequence-

pair tasks, there are more than two sequences involved in the input of BERT for

the table retrieval task and the sequence could have a lot of [SEP] tokens. BERT

practitioners know [SEP] is a special token that is used as a delimiter of sequences.

For our case, there could be a lot of [SEP] tokens in a single input and the number of

[SEP] tokens are different across different samples. In this section we explore whether

the self-attention patterns of BERT used in this chapter which involve multiple

sequences are different from a BERT model fine-tuned on single sequence/sequence
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pair tasks.

We draw all the attention maps of a random example from the test set in Figure

6.3. We find all the types of self-attention maps categorized in Kovaleva et al. [128]:

vertical, diagonal, vertical with diagonal, block and heterogeneous. We find that

[SEP] embeddings in lower layers are attended or attending more differently than

those in higher layers. Taking the 1st self-attention head in the 4th layer as an

example, the 1st [SEP] embedding mainly attends to itself, while the other [SEP]

embeddings mainly attend to [CLS] embedding. In contrast, the attentions for

[SEP] tokens are very similar in higher layers resulting in a lot of grid-like attention

maps (e.g., the left sub-figure of Figure 6.3). We also quantitatively measure the

embeddings of different [SEP] tokens and calculate the smallest cosine similarity

among all pairs of [SEP] in the same layer. The smallest cosine similarity is 0.78

in the 1st layer but increases close to 1 in higher layers, which means [SEP] tokens

have different embeddings in lower layers, and after layers of self-attention, they

have almost the same representations.

Besides the types of attention maps described by Kovaleva et al. [128], we observe

some attention maps that look like scatter plots, which include sparse small blocks

(e.g., head 1 in the 4th layer). This is because multiple sequences are included in a

single input separated by [SEP] and some attention heads have a strong preference

to put attention on multiple sequences (inter-sequence attention). We also observe

there are self-attention heads that show intra-sequence attention patterns. For ex-

ample, caption and section title both attend to themselves a lot in head 9 of the

1st layer. Query tokens attend a lot to themselves in head 5 of the 1st layer (right

in Figure 6.3). The existence of intra-sequence and inter-sequence attention

patterns may indicate that BERT can learn various sequence-level features through

self-attention.

6.6.2 BERT Embedding Comparison

In the experiments, only the [CLS] embedding in the last layer is used as BERT

features and the rest are not utilized. Here we further analyze the relationships
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Figure 6.4: Average cosine similarity among different types of tokens in different layers.

among different types of BERT embeddings.

For each sample in the testing set, we extract embeddings corresponding to query

tokens and average them as the query representation. We do the same for [SEP]

and caption. Then we calculate the cosine similarity between every two of [CLS],

[SEP], query and caption. We show the average cosine similarity of testing samples

at different layers in Figure 6.4. We observe that the patterns between special/query

tokens and table/context field tokens are similar, which means in Figure 6.4, if we

replace caption with other context fields or selected items, the general patterns do

not change. For example, “Query-Caption” is similar to “Query-Page title” and

“CLS-Caption” is similar to “CLS-Page title”.

In the 1st layer, [SEP] is close to query and caption while [CLS] is far from [SEP],

query and caption. From layer 2 to layer 8, we note that [CLS] is very close to [SEP],

which may indicate that [CLS] aggregates segment-level information through these

layers. In contrast, the similarities among [SEP], query and caption do not change

significantly from layer 2 to layer 14. It is interesting that from layer 23 to the last

layer, query and [CLS] become closer but far away from caption. In the last layer,

[SEP] is closer to query than [CLS], which may indicate [SEP] captures more query

features than [CLS].
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6.7 A New Test Collection for Web Table Re-

trieval

A Web table such as shown in Figure 6.1 usually has rich context information such as

the page title and surrounding paragraphs. Prior datasets such as WikiTables [299]

and WebQueryTable [242] only have a single relevance label for a dataset. However,

the relevance of context fields can be different. In this section, we create and ex-

periment with a new Web table retrieval (WTR) collection which has the following

improvements compared with previous collections:

1. Diversity. The WikiTables collection [299] and GNQtables [234] only include

tables from Wikipedia, while our collection covers broader topics retrieved

from over 61,000 domains. Our collection can include any user-generated

content and less than 1% of the tables are from Wikipedia. For the same query

“Fast cars”, the relevant tables in the WikiTables collection list facts about

different car models, while tables in WTR can contain subjective information

such as the example in Figure 6.57.

2. Rich context. As shown in Figure 6.5, each table in our new collection has

four context fields: page title, text before the table, text after the table, and

entities that are linked to the DBpedia [137]. We also keep other metadata

about the source Web page. Details are in Section 6.7.2.

3. Labels on multi-fields. We notice that the relevance of a table and its

context fields could be different. For example, the entities in Figure 6.5 are

different car models and therefore can be considered as relevant to the query

“Fast cars” while the page title “News development” is irrelevant. This is the

first collection that has separate relevance labels for different sections of a Web

page containing a table.

7Wikipedia has strict content policies (e.g., neutral point of view) and therefore is more limited
to factual knowledge.
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The page title is ____ to the query “fast cars”.

not relevant
relevant
highly relevant

Given query:

Page title:

Fast cars

News development

The above text is ____ to the query “fast cars”.

not relevant
relevant
highly relevant

Passage before the table
Are you a car lover and very curious to know what 
are the top selling cars in 2014, this article ….

The above text is ____ to the query “fast cars”.

not relevant
relevant
highly relevant

Passage after the table
From the panel give, it’s clear that Chevrolet Silverado and Toyota 
Corolla secured the top position in the Kelly Blue Book’s ….

The table is ____ to the query “fast cars”.

not relevant
relevant
highly relevant

The Table body

S.No

Rank

Model

Bating Points

1

#1

Chevrolet Silverado

9

2

#2

Toyota Corolla

9

…

…

…

…

The above entities are ____ to the query “fast cars”.

not relevant
relevant
highly relevant

The identities entities
Chevrolet Silverado, Toyota Corolla, …

Figure 6.5: Illustration of the crowdsourcing interface design.

4. Reproducibility. We describe the details of dataset pre-processing and re-

lease the run files of baseline methods for easy comparison.

The WTR collection contains not only 6,949 annotated query-table pairs but

also query-context pairs for each context field which are ignored in previous test

collections. We provide details of how the corpus is pre-processed (Section 6.7.1)

and rankings of different table search methods (Section 6.7.4 and 6.7.5), making a

future comparison with other work easier.

6.7.1 Constructing the Test Collection

In this section, we describe the test collection, including the table corpus, queries

and the process of collecting relevance assessments.

Query and Table Corpus

We build the test collection with the English subset of WDC Table Corpus 20158

which includes 50.8M relational HTML tables extracted from the July 2015 Common

8http://webdatacommons.org/webtables/2015/EnglishStatistics.html
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Crawl. All the tables are highly relational with an indexed core column including

entities or a header row describing table attributes. Zhang et al. [302] further process

the subset with novel entity discovery and link identified entities with their aliases

to DBpedia. This results in 16.2M tables after retaining only those with at least one

identified entity. Note that the WDC Table Corpus also includes Wikipedia pages

(less than 1%) and can be considered as an extension of WikiTables collection [299].

However, this new collection contains tables from 61,086 different domain names

and covers a broader range of topics.

The same set of queries with WikiTables collection [299] is used which includes 30

queries from Cafarella et al. [35] collected from Amazon’s Mechanical Turk9 platform

and 30 queries from Venetis et al. [259] collected from query logs of searching for

structured data.

Pooling

As a standard practice of IR test collection construction, we fetch the candidates by

retrieving the top 20 tables using multiple unsupervised methods. Specifically, we

use BM25 [222] to retrieve seven indexed fields: Table, Caption, Page title, Header,

TextBefore, TextAfter and Catchall. The details of those fields are described in

Section 6.7.2. The final assessment pool contains 6,949 query-table pairs.

Collecting Relevance Judgments

In the WikiTables collection, a table, along with other context fields such as page

title and section title, is presented to an annotator, while only a single relevance

label is assigned. However, a table does not always have the same relevance label

as context fields. For example, the entities in Figure 6.5 representing different car

models are relevant to the query “Fast cars” while the page title “News development”

is irrelevant. Therefore, for each record (i.e., query-table pair) in our new collection,

we ask the annotator to judge the relevance of each field concerning a query as shown

9https://www.mturk.com/
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in Figure 6.5. We use Amazon’s Mechanical Turk to collect all the judgments based

on a three-point scale:

• Irrelevant (0): this field is irrelevant to the query (i.e., based on the context

you would not expect this to be shown as a result from a search engine).

• Relevant (1): this field provides relevant information about the query (i.e.,

you would expect this Web page to be included in the search results from a

search engine but not among the top results).

• Highly relevant (2): this field provides ideal information about the query

(i.e., you would expect this Web page ranked near the top of the search results).

To control the annotation quality, 135 query-table pairs for one query annotated

by Chen et al. [59] are taken as testing questions (where at least two of the experts

agreed on the relevance label). Each of the remaining query-table pairs is paired

with a randomly sampled testing question, which means a single assignment consists

of two query-table pairs. Based on the testing questions, we consider the following

metrics:

• Assignment accuracy: For an assignment, if 3 out of 5 relevance judgments

corresponding to gold labels of a testing question are correct, then the assign-

ment accuracy is 60%.

• Worker accuracy: If a worker submits the results of 5 assignments, there

are 5 × 5 = 25 labels of 5 testing questions. If 20 out of the 25 labels are

correct, then the worker accuracy is 80%.

• Approval rate: If a worker submits 50 assignments and 30 assignments are

approved, then the approval rate of the worker is 60%.

We first approve those assignments with at least 60% assignment accuracy or

the assignments from workers whose worker accuracy is at least 80%. Then we only

allow those workers whose approval rates are at least 50% to continue the remaining

annotation process. We collected 3 judgments for each record and paid workers
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5 cents per assignment. In Table 6.7, we show the Fleiss’ Kappa inter-annotator

agreement of different sections. From the table, we can see that the annotators

disagree with the judgments on entities the most and make fair agreements on other

sections. To determine the relevance label of each section to a query, we took the

majority vote among three judgments. In case of a tie, we took the average of

relevance scores as the final judgment. We compare the statistics of labels between

WTR and WikiTables collection [299] in Figure 6.6. We can see that the proportion

of 0,1,2 labels in the two datasets are similar but our collection is more than twice

the size of the WikiTables collection.

2269(73%)

474(15%) 377(12%)

4703(68%)

1271(18%)
975(14%)

0
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2500
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4500

5000

0 1 2

WikiTables WTR

Figure 6.6: Comparison of relevance label distributions between WikiTables and the
WTR collection.

Table 6.7: The Fleiss’ Kappa inter-annotator agreement of different sections.

Field Fleiss’ Kappa

page title 0.28
text before the table 0.26
table 0.27
entities 0.20
text after the table 0.23
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Inter-field analysis

One of our main contributions is that we provide the relevance annotations of context

fields of a table. The authors of WikiTables collection [299] only asked workers to

assign a single label for a table, but the context information (e.g., page title) was

also presented to workers, which may mislead the workers. For example, if a page

title is relevant while the table is not, then a worker may still consider it as relevant.

Besides, lack of context could lead to misunderstanding of tables. For example, the

table in Figure 6.5 provides a ranked list of cars. Without surrounding passages

saying the ranking criteria are subjective ratings from customers, an annotator may

think the cars in the table are ranked by speed and annotates it as relevant to the

query “fast cars”.

To study the discrepancy of relevance judgments among different fields, we could

make the assumption that the four relevance labels of context fields are also rele-

vance judgments for the Web table. It resembles the situation in which we ask five

annotators to judge every query-table pair and we want to know the agreement be-

tween any two raters (fields). The Cohen’s Kappa statistics between any two raters

(fields) are summarized in Table 6.8. As we can see from the table, different context

fields have different levels of agreement with Table. Among all the context fields,

TextAfter has the most agreement with Table while Page Title has the least agree-

ment with Table. Page Title often includes little information and even if its content

is relevant the worker can hardly recognize it. However, the content in TextAfter is

more likely to be the paragraph that explains the details of the Table which deepens

the reader’s understanding. As shown in Figure 6.5, Page Title “News Develop-

ments” seems to be a general title of a news website and tells nothing related to the

query or Table on the same page. But the content in TextAfter further illustrates

the Table.
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Table 6.8: The Cohen’s kappa inter-annotator agreement between any two fields.

TextBefore Page title Table Entities TextAfter
TextBefore 1 0.44 0.41 0.34 0.41
Page title 0.44 1 0.39 0.33 0.39

Table 0.41 0.39 1 0.4 0.43
Entities 0.34 0.33 0.4 1 0.37

TextAfter 0.41 0.39 0.43 0.37 1

6.7.2 Preprocessing and Indexing

Leveraging the entity linking results of Zhang et al. [302] which are formed as ¡table

mention, entity entries¿ pairs10, we construct the table corpus by extracting the

original tables from the English subset of WDC Table Corpus 201511 and mapping

mentions to KB entries. This corpus is comprised of 3M relational tables. In addition

to the original fields (cf. Table 6.9), each table has an Entities field, listing all the

in-KB entities identified by Zhang et al. [302]. We use Elasticseach12 for indexing

the tables, separated by the fields in Table 6.9.

The scripts to download, preprocess and index the data are also available on our

GitHub repository.13

6.7.3 Compared Methods

We compare with both unsupervised and supervised methods.

• Single-field document ranking: Each table is represented as a single doc-

ument [36]. In our corpus, the content in the Catchall field described in Table

6.9 is used as the table representation. Then classic IR methods like Language

Models with Dirichlet smoothing are used for ranking.

10https://zenodo.org/record/3627274#.YC91NehKh1Q
11http://data.dws.informatik.uni-mannheim.de/webtables/2015-07/englishCorpus/

compressed/
12https://www.elastic.co/downloads/past-releases/elasticsearch-5-3-0
13https://github.com/Zhiyu-Chen/Web-Table-Retrieval-Benchmark
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Table 6.9: Table fields used when constructing the corpus.

Field Definition

Page title Title of the Web page where the table lies.
It is determined from HTML tags

TextBefore 200 words before the table
Caption Caption of the table
Table The extracted table from a Web page
Header Headers of the table if exist
Entities Entities in the tables identified by the novel

entity discovery process [302]
TextAfter 200 words after the table
Orientation Orientation can be either horizontal or vertical.

A horizontal table has attributes in columns while the
attributes of a vertical table are represented in rows

URL The original web address of the Web page
Key Column For a horizontal table, the key column is the one

contains the names of the entities
Catchall The concatenation of page title, caption, table, text

before and after the table

• Multi-field document ranking: Each table is represented as a multi-field

document [200]. We use the following five fields: page title, TextBefore,Table,

TextAfter and Header. Unlike [200] and [299], we do not consider Caption.

Since we find that few tables have non-empty table captions and most tables

with captions are from Wikipedia.

• LTR: Learning-To-Rank [299] is a feature-engineering approach leveraging

table structure and lexical features (Features 1-12 in Table 6.10). A random

forest is used to fit the ranking features in a pointwise manner.

• STR: The Semantic-Table-Retrieval approach [299] extends LTR with se-

mantic features such as bag-of-categories, bag-of-entities, word embeddings,

and graph embeddings. These embeddings are fused in different strategies [297]
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to generate ranking features (Features 13-15 in Table 6.10). Like LTR, a ran-

dom forest is used for pointwise regression.

We compare the above methods with BERT-ROW-MAX proposed in this chapter.

Table 6.10: Features extracted from Web tables which are used in LTR and STR meth-
ods.

ID Description Dim.

1 Number of query terms 1
2 Sum of query IDF scores (from indexed fields except Caption) 6
3 The number of rows in the table 1
4 The number of columns in the table 1
5 The number of empty table cells 1
6 Ratio of table size to page size 1
7 Total query term frequency

in the leftmost column cells
1

8 Total query term frequency in
second-to-leftmost column cells

1

9 Total query term frequency in the table body 1
10 Ratio of the number of query tokens found

in page title to total number of tokens
1

11 Ratio of the number of query tokens found
in table title to total number of tokens

1

12 Language modeling score between query and
multi-field document representation of the table

1

13 Four semantic similarities between the query
and table represented by bag-of-word embeddings.

4

14 Four semantic similarities between the query
and table represented by bag-of-entities.

4

15 Four semantic similarities between the query
and table represented by bag-of-graph embeddings.

4

6.7.4 Implementation Details

For single-field and multi-field document ranking, we use the implementations from

Nordlys [103] which has interfaces to Elasticsearch. Since the features used by LTR
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Table 6.11: The evaluation results of compared table retrieval baseline methods.

Model MAP P@5 P@10 NDCG@5 NDCG@10

Single-field document ranking 0.5071 0.4380 0.3966 0.4124 0.4851
Multi-field document ranking 0.5104 0.4407 0.3943 0.4201 0.4916
LTR 0.5878 0.5300 0.4433 0.5313 0.5870
STR 0.6210 0.5493 0.4727 0.5585 0.6258
BERT-ROW-MAX(base) 0.6346 0.5713 0.4800 0.5737 0.6327

Table 6.12: Table retrieval evaluation results with different annotation “bias”. We high-
light the cases where the results are improved over the original method.

Model MAP P@5 P@10 NDCG@5 NDCG@10

STR 0.6210 0.5493 0.4727 0.5585 0.6258
STR (Max-Entities) 0.6261 (+0.82%) 0.5573 (+1.46%) 0.4763 (+0.77%) 0.5634 (+0.88%) 0.6281 (+0.36%)
STR (Min-Entities) 0.5893 (-5.11%) 0.5253 (-4.37%) 0.4533 (-4.10%) 0.5251 (-5.99%) 0.5872 (-6.18%)
STR (Max-PageTitle) 0.6137 (-1.18%) 0.5487 (-0.12%) 0.4677 (-1.06%) 0.5517 (-1.22%) 0.6154 (-1.67%)
STR (Min-PageTitle) 0.6060 (-2.42%) 0.5473 (-0.36%) 0.4613 (-2.40%) 0.5419 (-2.98%) 0.6041 (-3.47%)
STR (Max-TextBefore) 0.6127 (-1.33%) 0.5380 (-2.06%) 0.4703 (-0.50%) 0.5472 (-2.03%) 0.6171 (-1.39%)
STR (Min-TextBefore) 0.6021 (-3.04%) 0.5480 (-0.24%) 0.4547 (-3.81%) 0.5471 (-2.04%) 0.6003 (-4.08%)
STR (Max-TextAfter) 0.6203 (-0.12%) 0.5533 (+0.73%) 0.4770 (+0.91%) 0.5545 (-0.72%) 0.6265 (+0.11%)
STR (Min-TextAfter) 0.6007 (-3.26%) 0.5327 (-3.03%) 0.4577 (-3.17%) 0.5294 (-5.21%) 0.5970 (-4.61%)

rely on the source of tables and some features extracted from Wikipedia tables are

not available for Web tables (e.g., number of page views), we generate the features

which apply to the new test collection. The original STR calculates four semantic

representations for queries and tables. Since there are no Wikipedia categories

for all Web tables, we use three semantic representations for queries/tables: bag-

of-entities, word embeddings, and graph embeddings. For each type of semantic

representation, we use early fusion, late-max, late-sum, and late-max, as described

in Zhang et al. [297] to obtain four semantic matching scores, which results in 12

semantic matching features in total for each query-table pair. We summarize the

features in Table 6.10, where features 1-12 are used in LTR and features 1-15 are used

in STR. The scikit-learn14 implementation of random forest is used for both LTR

and STR. We set the number of trees to 1000 and a maximum number of features

in each tree to 3. For BERT-ROW-MAX, we use the pre-trained BERT-base-cased

14https://scikit-learn.org/
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model15 which consists of 12 layers of Transformer blocks. As in Section 6.4, we train

the model with 5 epochs, and batch size is set to 16. The Adam optimizer [123] with

a learning rate of 1e-5 is used to optimize BERT-ROW-MAX. A linear learning rate

decay schedule with a warm-up ratio of 0.1 is also used. We train all the models

using 5-fold cross-validation (w.r.t. NDCG@5). To facilitate fair comparison in

future work, we prepared the five data splits used for cross-validation in our WTR

repository13, which is not provided by previous work [299].

6.7.5 Overall Performance

In Table 6.11 we report on the performance of different table retrieval methods.

The conclusion is consistent with Section 6.4 and Section 6.5 that BERT-ROW-

MAX achieves the best overall evaluation metrics. STR outperforms LTR and

other unsupervised methods significantly. However, different from the results on

WikiTables collection, BERT-ROW-MAX does not outperform STR sufficiently.

We speculate that the new corpus may include more noise which makes it more

difficult for neural models to learn features. In contrast, LTR and STR are trained

on curated features which are more robust to noise in raw text.

6.7.6 Utilizing Labels of Context Fields

Recall that we have explicitly collected the relevance judgments of different fields

in Section 6.7.1, we observe that a context field does not always have the same

relevance label as the table. This discrepancy could result in bias in the annotation

process of WikiTables collection. For example, a strict annotator may think a table

should be annotated as relevant when all the context fields are also relevant. While

a lax annotator may consider a table as relevant when any of the context fields

provides related information even if the table itself is not relevant. To investigate

how the labels of context fields can help table retrieval, e.g., how the annotation bias

could potentially affect the models, we employ two strategies to resemble a strict

15https://huggingface.co/transformers/pretrained_models.html
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annotator and a lax annotator: given the original label lt of a table and the label lc

of one context field, we re-annotate lt as either max(lt, lc) or min(lt, lc). Then we

can use the “new” labels to train the models but evaluate on original labels.

We take the STR approach as the example and in total form 8 variations for

STR which are trained with “biased” labels by combining the min/max strategy

with four context fields. We summarize the results of STR trained on new labels

in Table 6.12. For example, STR (max-entity) means STR is trained with the

new labels where the maximum relevance among a table and its Entities field is

used as the training label for each query-table pair. Note that we only change

the labels in the training set and keep the original testing set since the task is

still table retrieval rather than context field retrieval. We can observe that the

performance of majority models decreases compared with the model trained on the

original labels, which demonstrates that the biased annotation can harm the model

training. Among those cases, STR (Min-Entities) has the most performance drop.

Nevertheless, there are a few cases where the performance slightly increased. It is

worth noting that STR (max-entity) performs better than the model trained on the

original labels on all the evaluation metrics. We observe the same results on other

supervised methods. Table retrieval and entity retrieval may be highly synergistic

tasks. Taking good advantage of labels from Entities can help table retrieval while

misusing them can lead to a large performance drop.

6.8 Summary

We have addressed the problem of ad hoc table retrieval with the deep contex-

tualized language model BERT. Considering the structure of a table, we propose

three content selectors to rank table items in order to construct input for BERT

which effectively utilize useful information from tables and overcome the input

length limit of BERT to some extent. We combine BERT features and other tables

features to solve the table retrieval task as a pointwise regression problem. Our
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proposed Hybrid-BERT-Row-Max method outperforms the previous state-of-the-

art and BERT baselines with a large margin on the WikiTables dataset. Through

empirical experiments, we find that using the max salience selector with row items is

the best strategy to construct BERT input. Overall, we also find that sum salience

selector is the best for cell items. While for column items, the mean salience selector

only seems to be the best when a feature-based approach is used. We further show

that the feature-based approach of BERT is better than jointly training BERT with

a feature fusion component. We also conduct experiments on the WebQueryTable

dataset and demonstrate that our method generalizes to other domains.

Our analysis on fine-tuned BERT shows that various sequence-level features are

captured by the self-attention of BERT and [CLS] embedding tends to aggregate

sequence-level information, which could explain why using it as features is effective

for the ad hoc table retrieval task. We also find that [SEP] embeddings from the

last layer of BERT are very close to query embeddings, which suggests that making

use of [SEP] has the potential to further improve performance.

We also propose a new test collection WTR for Web table retrieval. Compared

with previous datasets, WTR covers a broader range of topics and includes tables

from over 61,000 different domain names. Since a Web table usually has rich context

information such as the page title and surrounding paragraphs, we not only provide

relevance judgments of query-table pairs, but also the relevance judgments of query-

table context pairs with respect to a query, which are ignored by previous test

collections. In the experiments, we show that utilizing the labels from context fields

may be helpul for table retrieval.

6.9 Bibliographic Notes

Given the advances of deep contextualized language models for natural language

understanding tasks, researchers from the IR community have begun to study BERT

for IR problems. Nogueira et al. [184] describe an initial application of BERT for

passage re-ranking task where the sentence-pair classification score is used. Nogueira
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et al. [185] then propose a multi-stage document ranking framework where BERT

is used for pointwise and pairwise re-ranking. Yang et al. [285] show that treating

social media text retrieval as a sentence pair classification task can achieve new

state-of-the-art results. Then they apply BERT to a dataset with longer documents

and rank a document with linear interpolation of the original document score and

weighted top-n sentence scores. Similarly, Dai et al. [68] use passage-level evidence

to fine-tune BERT and consider all passages from a relevant document as relevant.

They first predict the relevance score of each passage independently. The document

relevance is the score of the first passage, the best passage, or the sum of all passage

scores. BERT has also been applied to FAQ retrieval task by Sakata et al [226] where

given a user query, a question is scored by the combination of question-question

BM25 score and question-answer BERT score. MacAvaney et al. [159] combine the

BERT classification token with existing neural IR models. The experiments show

that this joint approach can outperform a vanilla BERT ranker.

IR researchers have also investigated the possible reasons why BERT can have

such substantial improvements for IR problems. Through carefully designed experi-

ments, Padigela et al. [192] show that BM25 is more biased towards high-frequency

terms which hurt its performance while BERT has a better ability to discover the

semantic meaning of novel terms in documents with respect to query terms. They

also find that BERT has less performance improvement compared with BM25 for

long queries. Dai et al. [68] demonstrate that BERT can take advantage of stop-

words and punctuation in the queries which is in contrast to traditional IR models.

Qiao et al. [206] show that BERT can be categorized into interaction-based IR

models because simply obtaining query and document representations from BERT

independently and then computing their cosine similarity results in performance

close to random. They also find that BERT assigns extreme matching scores to

query-document pairs and most pairs get either one or zero ranking scores.

Many researchers (e.g., [185, 285, 68, 163]) find that the length limit of BERT

causes difficulties in training. Mass et al. [163] specifically study the effect of passage

length and segmentation configurations on passage re-rank performance. They find

that mid-sized (256 tokens) inputs achieve the best results for the selected datasets.
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Dai and Callan’s method [68] to deal with long documents as mentioned before may

result in noisy positive samples because for a relevant document, not all sentences are

relevant to a query. The splitting and then aggregating methods in these approaches

can increase the training and inference cost several times. In this chapter, we pre-

select the segments from the input with low-cost methods and then use BERT for

the downstream table retrieval task.
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Chapter 7

Dataset Search with Graph Neural

Networks

Table retrieval methods in previous chapters only consider the textual information

of tables and the structural information is rarely used. In this chapter, we propose

to model the complex relations in the table corpus as one or more graphs and then

utilize graph neural networks to learn representations of queries and tables. We

show that text-based table retrieval methods can be further improved by graph-

based predictions which fuse multiple field-level information.

7.1 Introduction

A massive number of tables extracted from the Web have been used in various re-

search tasks such as question answering [52], entity linking [27, 302] and table aug-

mentation [26, 71, 54, 287]. Previous table search methods [299, 253, 55, 57, 249, 59]

either treat a table as a regular or multifield document. The structure of a table

is underutilized. Chen et al. [57] slice a table into smaller pieces and select only

the most salient ones for final ranking. However, the structure information across

different tables is missed. As a structured document, a table itself can be naturally

viewed as a graph. The words appearing in the same column or row usually have
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certain relationships. Such relationships can hardly be captured by models which

treat the table as flat text. As shown in Figure 7.1, we know that “Euro” and

“United States Dollars” are two different types of currencies since they appear in

the same column “Currency”. If the table is flattened into a sequence, the exist-

ing methods [200, 299, 57] for text retrieval will neglect the semantic relationship

between table attributes/headers and table values. The only structure information

after flattening operation is the order of tokens. However, this artificially-created

order information is not a part of the original data and could mislead the model

training.

State or territory Currency ISO code

Austria Euro EUR

Germany Euro EUR

United States United States dollar USD

… … …

Page Title: List of circulating currencies

Section Title: List of circulating currencies by state or territory

Table Ti:

Caption: The list denotes the circulating currencies by all countries                    
and territories across the world.

Figure 7.1: An example of a Web table with page title and section title as context fields.

In this chapter, we propose a graph neural network-based method for ad hoc

table retrieval. By explicitly modeling the table corpus as one or more graphs, we

directly encode the structural information of the table which is often ignored by

previous methods. Our principal contributions are:

1. We propose a novel multi-graph neural network method for ad hoc table re-

trieval.

2. We propose table-based pointwise mutual information (TPMI) to calculate the

semantic correlation of terms in the table corpus.
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3. The experimental results demonstrate that our proposed method outperforms

baselines and can improve the performance of previous sequence-based meth-

ods.

7.2 Methods

In this section, we introduce the details of our proposed Multi-Graph NEural net-

works for Table Search (MGNETS for short). Our method includes four modules:

graph construction, multi-graph neural network encoder, query/table pooling layer

and ranking layer. First, we describe how to construct graphs from the table corpus

(Section 7.2.2). Then we propose to use graph neural networks as a encoder to

learn node representations through message passing (Section 7.2.3). After that, we

propose different ways to learn query/table representations from node embeddings

(Section 7.2.4). In the end, the ranking layer predicts the final relevance score with

query/table representations as input (Section 7.2.5).

7.2.1 Problem Statement

In the task of table search, given a query q usually consisting of several keywords q =

{k1, k2, ..., kl}, our goal is to rank a set of tables D = {T1, T2, ..., Tn} in descending

order of their relevance scores with respect to q. Each table Ti has corresponding

context fields {pi1, ..., pik}. A data table is a set of cells arranged in rows and columns

like a matrix. Each cell could be a single word, a real number, a phrase or even

sentences. The first row of a table is the header row and consists of header cells. The

context fields associated with a table instance depend on the source of the dataset.

For example, a table from Wikipedia usually has caption, page title, and section

title as context fields as shown in Figure 7.1.

7.2.2 Graph Construction

To construct the graph G for table search, we first need to define the nodes set V
and edges set E of the graph. We have two types of nodes in the graph. Every
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unique term that appears in the data tables or context fields is represented as a

term node vt ∈ V . Every data table has a corresponding table node vT ∈ V .

We add an edge between two nodes if they have a co-occurrence relationship. We

list the possible types of edges below.

Context field: t1 t2

Table        : 

… ……

…
…t5

t4
t1
t3

Tv1 v2

Tv1

v5 v3 v4

Gci

Gdi

Ti

Figure 7.2: An example of constructed graphs from a table.

Table-Term Edges. A term node can be from either a table or a context field

of a table. A table-term edge (vT , vt) ∈ E is constructed if the term t occurs in the

table T or any context fields of table T . We can also treat queries in the training

set as another context field. However, in experiments (not shown) we find our

method can still achieve good performance without constructing edges and nodes

from queries.

Term-Term Edges. In previous work of applying graph neural networks for

text classification [286, 150], a fixed size sliding window is applied to all documents

in the corpus and the pointwise mutual information (PMI) between two terms is

calculated to determine the corpus-level co-occurrence. Unlike a text document, a

data table has a non-linear structure so that defining the co-occurrence relationship

using a fixed size sliding window and calculating the PMI is not directly applicable.

Moreover, the cross-field co-occurrence is undefined in previous methods. We can

treat every field as a document and then calculate the PMI score for term pairs in

different fields. However, the co-occurrence of a term pair in one field does not indi-

cate its co-occurrence in another field. In fact, the context fields have short lengths

as shown in Figure 7.1. Besides, lots of context fields are single phrases describing

the topic of the corresponding data table, which indicates that the relationships

between tables and context fields (already described by table-term edges) are more
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important than the intra-context fields relations. Instead of using a fixed size sliding

window, we treat every column or every row as the sliding window. For a data table

with ri rows and ci columns, there are ri + ci context windows. Now we define the

table-based pointwise mutual information (TPMI) score for term pair ti and

tj:

TPMI(ti, tj) = log
P (ti, tj)

P (ti)P (tj)

= log
C(ti, tj)/C

C(ti)/C × C(tj)/C

= log
C(ti, tj) × C

C(ti)C(tj)
(7.1)

C =
n∑

i=1

ri + ci

where C =
∑n

i=1(ri +ci) corresponding to the total number of sliding windows in all

data tables, C(ti) is the number of rows and columns containing ti and C(ti, tj) is

the number of rows and columns containing both ti and tj. A positive TPMI score

indicates two terms are semantically correlated. We add (ti, tj) into E if two table

terms ti and tj have a positive TPMI score.

Multi-graph Construction. We can construct one heterogeneous graph which

contains all types of edges mentioned above. However, the semantic relation of a

term pair in one field does not imply the relation in another field and constructing a

graph with all possible edges could result in ambiguous semantic meanings. There-

fore, we construct multiple subgraphs and each subgraph captures certain semantic

relations among nodes. In this chapter, we construct two subgraphs Gd = (Vd, Ed)
and Gc = (Vc, Ec):

Vd = {VT ∪ Vdt} Vc = {VT ∪ Vct}
Ed = {(vi, vj)|(vi, vj) ∈ E , vi, vj ∈ Vd}
Ec = {(vi, vj)|(vi, vj) ∈ E , vi, vj ∈ Vc}
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where VT is the set of nodes representing data tables, Vdt represents all term nodes

in data tables, and Vct represents the nodes constructed from context fields. Note

that both subgraphs have table nodes and in each subgraph two table nodes are

not directly connected but indirectly connected by co-occurred terms. The first

subgraph contains term nodes from data tables while the second subgraph contains

term nodes from context fields. By building such a heterogeneous graph, both inter-

field and intra-field information are captured. An example of constructed graphs

Gci and Gdi from table Ti is shown in Figure 7.2. Gd can be constructed by merging

all Gdi for Ti ∈ D. Gc can be constructed in a similar way.

L layers of 
Message 
propagation

Query Pooling

Table Embeddings

Relevance
score

L layers of 
Message 
propagation

Query Embeddings

Table Pooling

Query Pooling

Table Embeddings

Query Embeddings

Table Pooling

NTN

NTN

Ranking Layer

Ranking Layer

Graph-based prediction

Graph 
Construction 
of Gd

Graph 
Construction 
of Gc

Text Encoder

Text-based prediction

Layer 0 Layer L

Layer 0 Layer L

Figure 7.3: An illustration of the overall framework. From the corpus we construct
two different graphs. After message propagation through the multi-graph
encoder, we learn query and table representations from each graph. We
obtain the final ranking score from graph-based prediction and also the text-
based prediction from a text encoder.

7.2.3 Multi-graph Encoder

After obtaining the constructed graphs Gd and Gc, we can employ graph neural net-

works to learn the embeddings of nodes. The representation learning process of GNN

models can be divided into two steps: neighborhood aggregation and combination

[281]. The k-th layer of a GNN model is:

h(k)v = ϕ(k)(h(k−1)
v , ψ(k)({h{k−1}

u : u ∈ N (v)})) (7.2)
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where h
(k)
v denotes the feature for node v ∈ V at k-th layer, N (v) denotes the

neighborhood nodes of v ∈ V . ψ(k) is the aggregation function at k-th layer which

aggregates the representations of v’s neighbors. ϕ(k) generates the node representa-

tion of v at the k-th layer by combining its representation from the previous layer

and aggregated neighbor representations. For different GNN models, the aggre-

gate and combine functions are different [124, 230, 257]. In this chapter, we use

Graph Isomorphism Network (GIN) [281] as the multi-graph encoder to learn node

embeddings in Gd and Gc:

h
(k)
d = MLP

(k)
d ((1 + ϵ

(k)
d )h

(k−1)
d +

∑
u∈N (vd)

h(k−1)
u ) (7.3)

h(k)c = MLP (k)
c ((1 + ϵ(k)c )h(k−1)

c +
∑

u∈N (vc)

h(k−1)
u ) (7.4)

where ϵ
(k)
d and ϵ

(k)
c are learned parameters. Multi-layer perceptrons (MLPs) are used

to obtain features at k-th layer from aggregated node embeddings. We initialize the

node embeddings h
(0)
d ∈ R|Vd| and h

(0)
c ∈ R|Vc| with one-hot encoding features for

vd ∈ Vd and vc ∈ Vc respectively. After stacking l layers of GNN models, we obtain

l + 1 embeddings for each node in Gd and Gc.

7.2.4 Pooling Layer

The community has been studying how to design readout functions at the node level

for node classification and graph level for graph classification [124, 230, 257, 281].

In this section, we propose to learn query and table representations from node

embeddings obtained from Section 7.2.3. We generate two representations for queries

and two for tables: one representation is based on Gd and the other is based on Gc.

Given a query table pair (q, Ti) and Gd, we can find the set of nodes Vq ⊆ Vd

and Vti ⊆ Vd constructed from query q ∈ Q and table Ti respectively. To learn the

representation of q and Ti in Gd, we can use the graph-level readout function which

has been previously used in graph classification. However, to learn the representation

of a query or a table at k-th layer, we operate on the subsets of nodes instead of all
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the nodes:

h
(k)
qd = Sum({h(k)v : v ∈ Vq}), h

(k)
ti = Sum({h(k)v : v ∈ Vti}) (7.5)

In experiments not shown here, we find that summation of node embeddings is

more effective than mean pooling or max pooling. Equation (7.5) does not require

additional parameters which makes it computationally efficient. Therefore, we use

it for the initial node embeddings which are one-hot encoding features. Inspired

by SimGNN [16], we use the following attention-based pooling function to learn

query/table representations for other layers (k > 0):

h
(k)
qd = H

(k)
qd

⊤ · σ(H
(k)
qd ·Mean(H

(k)
qd W

(k)
1 )) (7.6)

h
(k)
ti = H

(k)
ti

⊤ · σ(H
(k)
ti ·Mean(H

(k)
ti W

(k)
1 )) (7.7)

where H
(k)
qd ∈ R|Vq |×d, H

(k)
ti ∈ R|Vti|×d denotes node embeddings of the query and

the table respectively; Mean(·) calculates the average embedding after the node

embeddings are transformed by a trainable weight W
(k)
1 ∈ Rd×d. Note that W

(k)
1 is

a shared parameter. σ(·) is the sigmoid function and its output can be considered as

the weights for query and table nodes so that the final representation is the weighted

sum of all node embeddings.

Given the context fields of Ti and q ∈ Q, we obtain the query representation h
(k)
qc

and context field representation h
(k)
ci from Gc in a similar way based on Equations

(7.5 - 7.7).

7.2.5 Ranking Layer

In Section 7.2.4, we generate the query representation (h
(k)
qd and h

(k)
qc ), table represen-

tation (h
(k)
ti ) and context field representation (h

(k)
ci ) from each layer of the multi-graph

encoder with a pooling layer. In order to predict the final relevance score of a given

query table pair (q, Ti), we first generate the single-graph predictions where each

uses different graph information. In the following, we show how to generate the
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prediction based on features learned from Gd. First, the query representation and

table representation are fed into two separate multi-layer perceptrons (MLP):

h
′(k)
qd = MLP

(k)
qd (h

(k)
qd ), h

′(k)
ti = MLP

(k)
ti (h

(k)
ti ) (7.8)

Then a neural tensor network (NTN) is used to generate the prediction at k-th layer

(Equation (7.9)).

y
(k)
d = h

′T(k)
qd W

(k)
2 h

′(k)
ti +W

(k)
3

[
h
′(k)
qd

h
′(k)
ti

]
+ b

(k)
1 (7.9)

We use a linear layer to combine the predictions from all layers.

yd = [y
(0)
d ; ...; y

(l)
d ]W4 + b2 (7.10)

The prediction yc based on the embeddings of Gc is similar to the steps in Equations

(7.8-7.10). Another linear layer is used to combine the predictions from different

graphs:

yg = [yd; yc]W5 + b3 (7.11)

Our method can be easily extended to have more than two graphs. For example, we

can build separate graphs for each context field and combine predictions for each

graph. For the purpose of explanation, we construct only one graph for all the

context fields.

We can also predict the relevance score between q and Ti only based on text

information:

yt = TextEncoder(q, texti) (7.12)

where Text-Encoder(·) can be any previous table retrieval method which treats

tables as text documents and texti is the text representation of a table(e.g. the con-

catenation of terms in Ti and its context fields). We obtain the final relevance score
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y by combining the graph-based and text-based predictions with a linear transfor-

mation:

y = [yt; yg]W6 + b4 (7.13)

7.2.6 Model Training

To learn the parameters, we optimize the model with pointwise mean square loss as

in [299, 57]:

L =
1

N

N∑
i=1

(yi − ŷi)
2 + β · ||Θ||2 (7.14)

where yi is the prediction from our model and ŷi is the ground truth for i-th training

sample. Θ denotes all trainable parameters and β controls the L2 normalization

which can affect overfitting.

7.3 Experiments

7.3.1 Dataset

To evaluate the performance of MGNETS, we utilize the WikiTables benchmark

[299] which includes 1.6M tables extracted from Wikipedia articles and each table

has three context fields: page title, section title and caption. We also treat table

headers as an additional context field. We evaluate the results using NDCG@5,

NDCG@10, P@5 and MAP. All results are tested for statistical significance using

the paired Student’s t-test at 95% confidence.
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7.3.2 Parameter Settings

We implement our models using Pytorch and DGL1. The node embedding size is

fixed to 50. For all multi-layer perceptrons, we use two layers. The Adam op-

timizer [123] is used to optimize all models. Five-fold cross validation is used

to obtain the final evaluation metrics and we use the same splits as [57] for fair

comparison. All the models are trained with 100 epochs. In terms of other hy-

perparameters, we apply a grid search method here: learning rate is searched

in [1e−6, 3e−6, 1e−4, 3e−4, 1e−2, 3e−2], and L2 normalization coefficient is tuned in

[5e−6, 5e−5, 5e−4, 5e−3]. We only use one layer of GIN in the multi-graph encoder.

7.3.3 Baselines Settings

To demonstrate the effectiveness of our MGNETS model, we compare to the follow-

ing: Multi-field BM25 [200], which is an unsupervised method that treats tables

as multifield documents and ranks tables with combined BM25 scores from each

field; STR [299], which proposes multiple embedding-based features and different

strategies to generate ranking features from those embeddings. A random forest

fits the ranking features in a point-wise manner; Conv-KNRM [69] where con-

volutional neural networks are used to learn n-gram soft matching signals between

queries and documents; and, BERT-ROW-MAX [57], the previous state-of-the-

art method using BERT as the backbone. It selects the most important rows with

max salience selector and concatenates them with context fields as BERT input.

Due to limited computational resources, we use the BERT-base-cased2 instead of

BERT-large-cased as in the original paper to initialize the BERT component. We

use Conv-KNRM or BERT-ROW-MAX as the text encoder in MGNETS, named as

MGNETS-Conv and MGNETS-BERT respectively.

1https://github.com/dmlc/dgl
2https://huggingface.co/bert-base-cased
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Table 7.1: Performance comparison with baselines. The superscript † denotes statisti-
cally significant improvements over all other methods.

Model MAP P@5 NDCG@5 NDCG@10

Multi-field BM25 0.4596 0.3273 0.4365 0.5049
STR 0.5711 0.3927 0.5762 0.6048

ConvKNRM 0.5561 0.3800 0.5556 0.5901
MGNETS-Conv 0.5912 (+6.3%) 0.3907 (+2.8%) 0.5910 (+6.4%) 0.6168 (+4.5%)

BERT-Row-Max 0.6146 0.4080 0.6167 0.6322
MGNETS-BERT 0.6339 (+3.1%) 0.4180†(+2.5%) 0.6373†(+3.3%) 0.6490†(+2.7%)

7.3.4 Overall Performance

We start by comparing the performance of MGNETS with all other baselines, as re-

ported in Table 7.1. We can observe that our proposed MGNETS-BERT achieves

the best performance across all evaluation metrics. As a strong interaction-based

neural IR model, ConvKNRM underperforms the feature-based STR model, which

indicates that the table retrieval task should not be treated as a traditional document

retrieval task. Combining both text-based predictions and graph-based predictions,

MGNETS-BERT outperforms BERT-ROW-MAX by 2.5 − 3.3% and MGNETS-

Conv outperforms ConvKNRM by 2.8 − 6.4%. The results verify the effectiveness

of our designed framework where the multi-graph information can benefit methods

where only text information is used. However, we do not claim our method to be the

new state-of-the-art method, since our goal is to study whether the learned graph

features can provide additional signals. It is possible that combining other designed

features can further improve the performance such as in Chapter 6, which is beyond

the scope of this chapter.

7.3.5 Ablation Study

To evaluate the effectiveness of several key components in MGNETS, we performed

ablation studies as shown in Table 7.2. The 2nd line in Table 7.2 shows the result

when the text encoder was removed. Encouragingly, MGNETS still performs better
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Table 7.2: Ablation study of our framework.

Model MAP P@5 NDCG@5 NDCG@10

MGNETS-BERT 0.6339 0.4180 0.6373 0.6490

MGNETS (graph only) 0.5812 0.3913 0.5823 0.6072
GNETS (G) 0.5753 0.3913 0.5748 0.6065
GNETS (Gc) 0.5634 0.3820 0.5657 0.6003
GNETS (Gd) 0.5701 0.3860 0.5678 0.5975

BERT-ROW-MAX (table) 0.5859 0.3933 0.5784 0.6061
ConvKNRM (table) 0.5403 0.3787 0.5382 0.5746

than all baselines in Table 7.1 except BERT-ROW-MAX. Without ConvKNRM as

the text encoder, the performance of MGNETS-Conv does not decrease too much

compared with MGNETS (graph only).

We also compare the performance of the model when using a single graph in-

stead of multiple graphs. GNETS is the model that only operates on one graph

and outputs a single graph-based prediction. GNETS (Gd) achieves better results

than GNETS (Gc) on all metrics except NDCG@10. This indicates that the fea-

tures in data tables could be more effective than features in context fields. We can

see that even with all types of edges, GNETS (G) underforms MGNETS, which

suggests it is more difficult for graph neural networks to extract features from one

single heterogeneous graph than from separate graphs. One possible reason is that

edges constructed from different fields may have different semantic meanings and

constructing a single heterogeneous graph could result in an ambiguous semantic

space.

We further show the results of baselines (last 2 lines in Table 7.2) when only using

data tables as input (i.e., no context fields). The NDCG@5 scores of BERT-ROW-

MAX and Conv-KNRM decrease by 6.2% and 3.7% respectively, while GNETS

(Gd) has similar performance with GNETS (G). It verifies our observation that the

text-based methods are less effective to extract features from flattened tables where

structure information is underutilized. The results also indicate that our proposed
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methods are more robust when context information is missing.

7.4 Summary

In this chapter, we propose a graph-based solution MGNETS to address the task of

table retrieval. We first study how to model the table corpus as one or more hetero-

geneous graphs and then utilize graph neural networks to learn the representations

of queries and tables from complex structures. Experimental results demonstrate

the features learned from multiple graphs can improve the text-based neural IR

models.

7.5 Bibliographic Notes

In this section, we review related work in graph-based methods for information re-

trieval. Early methods such as PageRank [193] and HITS [125] model link structure

among web pages and estimate their relative importance. Jiang et al. [114] build a

web-scale click graph in which a node represents a query or a document. A vector

propagation algorithm on the click graph is then proposed to learn vector represen-

tations for both queries and documents. A matrix factorization method is proposed

by Ma et al. [156] to learn query latent features for the task of query suggestion

from two bipartite graphs, where one is user-query bipartite graph and another is

query-URL bipartite graph.

More recently, embedding techniques have been used in graph-based methods.

Zhang et al. [306] exploit DeepWalk [199] and LINE [247] to learn embeddings for

queries and products from constructed query graph and product graph. Then the

learned query and product embeddings are used as features for product search.

Similar to product search, Li et al. [143] also use GNNs [124] to encode graph-

based information for document retrieval. In this chapter, we propose a graph-based

method for tabular dataset search where the structure information in the corpus is

modeled with graph neural networks.
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Chapter 8

Learning of Universal Dataset

Encoders

8.1 Introduction

In previous chapters, we have introduced and proposed different methods for tabular

dataset search, where given a keyword query, the goal is to return a list of tabular

datasets in descending order of their relevance scores with respect to the user query.

In database community, the task of finding unionable and joinable tables with a

source table has been studied for many years. It can also be considered as one type

of dataset search task where the query is also a dataset [265, 178, 305, 301, 264].

Current dataset search engines do not index dataset content and one reason is

that the raw datasets can be in different format. However, it can be helpful to build

a search engine where users can upload a dataset in specific format and retrieve

relevant datasets. Here we give a motivating scenario. Bob, a social scientist, has a

project analyzing public opinions about COVID-19 through social media platforms

such as Twitter. To do this, Bob first has crawled a large number of tweets which

include certain hashtags (e.g., #covid19). One way to analyze the opinions is to

treat it as a text classification problem where labels indicate users’ opinions or

sentiments. Annotating all of those data is impossible for Bob and annotating
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data1, label1; data11, data12,  ... ,  data1k,

data2, label2; data21, data22, ... ,  data2k,

...

datan, labeln; datan1, datan2, ... ,  datank,


User's Data

Augmented Data

a large amount of indexed datasets

Figure 8.1: A motivating example of dataset search where query is also a dataset. The
data in orange is retrieved from the dataset search engine.

few samples is feasible. We can assume there is a dataset search engine which

has indexed many datasets. Among those indexed datasets, some datasets may be

annotated by other researchers studying similar problems. For example, Mohammad

et al. [170] propose a dataset including more than 22,000 annotated tweets for the

task of emotion classification. Intuitively, this dataset is somewhat relevant to Bob’s

dataset. First, both datasets are collected from Twitter and therefore share some

characteristics (e.g., length). Second, both datasets are created for similar purposes

which indicates a label in one dataset could also be meaningful in another dataset.

We denote Bob’s annotated dataset as Db = {d1, d2, ..., dn}. A dataset search engine

R takes di as input and returns top-k relevant samples (i.e., tweets) from all indexed

datasets. There are two potential ways of using the data in Mohammad et al. [170]

to solve Bob’s project.

1. Few Shot Learning [240]: pretraining a model such as BERT [77] on re-

trieved data and then fine-tuning the model on a small set of Bob’s annotated

data;
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2. Weakly-supervised Learning [165, 144, 81]: using bootstrapping strategies

to label the retrieved data and then training a classifier on both datasets.

This application scenario is shown in Figure 8.1.

In this chapter, we show how to learn representations for datasets in a sin-

gle format. Specifically, we introduce a method called Universal Dataset En-

coders (UDE) that can encode a dataset into a dense representation. The learned

dataset representations from UDE can can help downstream tasks such as dataset

retrieval and dataset clustering.

8.2 Methods

8.2.1 Datasets are Point Sets

A point set seems to be a good intermediate representation for datasets in many

modalities. Some datasets are naturally point sets. For example, a point cloud is

a set of unordered 3D data points in space which represent a 3D shape or object.

A trajectory is a set of ordered 2D (or 3D) points describing the movement of an

object. In fact, text documents are treated as point sets by modern natural language

processing techniques. Either traditional bag-of-words models [221], or more recent

deep embedding-based methods [166, 77], consider a document as a set of word

representations. And for other datasets, they can often be transformed into point

sets. An image of size a×b can be translated into ab points in the format of (Cab, yab),

where Cab is the coordinate of a pixel and yab is the corresponding pixel value.

Therefore, we propose to represent a dataset as a point set. Formally, each

dataset can be represented as x = {p1, ..., pi, ..., pm} where pi is a k-dimensional

data point and m is the number of points inside x. Note that the size of each

dataset can be different. As proposed in Figure 8.2, we propose the framework of

universal dataset encoder where the similarity between a query dataset xq ∈ Q and

a candidate dataset can be calculated so that the most similar datasets to xq can be

retrieved. In the following subsections, we introduce different Point Set Encoders

that can learn features for a point set.
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Figure 8.2: Architecture of universal dataset encoder.

8.2.2 PointNet++ Encoder

We use PointNet++ [205] as the point set encoder as it was originally applied to

point cloud classification and segmentation. Here we briefly introduce the three

components of PointNet++:

• Sampling layer. Given a point set x = {p1, ..., pi, ..., pm}, iterative farthest

point sampling (FPS) is used to choose a subset of points xs = {pi1 , pi2 , ..., pin}
where pij is the most distant point from {pi1 , pi2 , ..., pij−1

} with regard to the

rest of the points. xs can be regarded as an abstract sketch of x so that the

size of x can be controlled.

• Grouping layer. In order to build local regions of a point set, the grouping

layer groups the input points into multiple groups (clusters) using centroids

from the previous sampling layer. Each group is constructed from a centroid

with K nearest neighbor (kNN) search.

• PointNet layer. In each local region, PointNet [204] is used to extract fea-

tures of each local region from the grouping layer. First, the coordinates of

points in a local region are translated into a local frame relative to the cen-

troid point: pi = pi − p̂ where p̂ is the centroid of this local region. Then the
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following function is used to extract local region features:

f(p1, ..., pi, ..., pm) = γ( max
i=1,...,m

(h(pi))

where γ and h are multi-layer perceptron (MLP) networks.

The above three components form one PointNet++ layer and we can stack mul-

tiple PointNet++ layers.

8.2.3 Graph Encoder

The input of the PointNet++ Encoder is the set of raw dataset points. The structure

of a point set is implicitly used in the sampling layer (i.e., FPS process) and grouping

layer (KNN search). An alternative way is explicitly constructing a graph from a

point set so that modern graph neural networks (GNNs) can be used as graph

encoders to learn point set representations.

Algorithm 1: The Ball-tree construction process of a point set.

Input : A point set x = {p1, ..., pi, ..., pm};
Output: The root of a constructed ball tree B.

1 if a single point remains then
2 create a leaf B containing the single point in x;
3 return B;

4 else
5 choose dimension c which has the greatest spread of points;
6 let p be the central point selected considering c;
7 let L, R be the point sets lying to the left and right of the median along

dimension c, respectively;
8 create B with two children;
9 B.pivot = p;

/* recursively constructing the remaining part */

10 B.child1 = construct(L);
11 B.child2 = construct(R);
12 B.radius = max(distance(p,bc)), where bc is a child node of B;
13 return B;

14 end
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Here, we first introduce the Dataset Index Graph (DIG). Given a point set

x, we can create its corresponding DIG Gx with a ball tree data structure which

is efficient for organizing points in a multi-dimensional space. The construction

of a ball tree is a top-down process that recursively splits the data points into

two sets. Each split step chooses the dimension with the greatest spread of points

and partitions the data by the median value along that dimension. We show the

construction process of a ball tree in Algorithm 11.

By organizing a set of data points with such a hierarchical data structure, mean-

ingful properties about the data distribution can be captured. A leaf node in Gx

represents an original data point and a non-leaf node of Gx represents a centroid

of a subset of original data points which are close to each other. Then we can use

any GNN layer as the point set encoder to learn the dataset representation. In our

experiments, we choose Graph Convolutional Networks (GCNs) [124] as the graph

encoder.

When the size of the point set is large, the Dataset Index Graph generated from

Algorithm 1 is a good data structure to organize those data points. However, if

the size of the point set is small, it may be unnecessary to build a DIG following

Algorithm 1. For example, a short text may only have a few words (i.e., points)

while the dimension of word embeddings can be 300, which makes the dimension

search step inefficient. Therefore, we propose Sentence Index Graph (SIG) for

short text documents. First, we build a single DIG for the whole vocabulary from

pre-trained word embeddings (e.g., GloVe [198]). Then we construct the SIG by

visiting each point (or word) appeared in the short text on the vocabulary DIG and

back-tracing the links to a parent node. Each SIG is a sub-graph of the vocabulary

DIG. The benefit of using SIG is that it implicitly utilizes the corpus-level word

semantics in the vocabulary DIG.

1The algorithm is adapted from Omohundro [188]
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8.2.4 Matching of Point Sets

Given a Point Set Encoder E and two point sets x1 ∈ Rk and x2 ∈ Rk, we first

obtain the dataset representations:

r1 = E(x1) (8.1)

r2 = E(x2) (8.2)

Then we use a linear layer to calculate the final matching score s (0 ≤ s ≤ 1)

between x1 and x2:

s = [r1 ⊕ r2]M (8.3)

where ⊕ concatenates the representation of r1 and r2. M ∈ R2∗d×1 is a trainable

variable and d (set as 50 in our experiments) is the dimension of the dataset repre-

sentations. During inference, the time complexity of Equation 8.3 is O(d). Distance

metrics for point sets (e.g., Hausdorff distance) usually have time complexity of

O(m1 ×m2) where m1 and m2 are the size of the two point sets, respectively. Usu-

ally, d can be very small and the size of a point set can be very large. Though our

current framework needs additional cost to obtain r1 and r2, dense retrieval tech-

niques [293] can be applied in the future to pre-compute dataset representations

efficiently and can be ignored during inference.

8.2.5 Training of Point Set Encoder

To learn the parameters, we optimize the model with pointwise mean squared loss:

L =
1

N

N∑
i=1

(si − ŝi)
2 + β · ||Θ||2 (8.4)

where ŝi is the prediction from Equation 8.3 and si is the ground truth for i-th

training sample. Θ denotes all trainable parameters and β is the L2 normalization

coefficient which controls the strength of the L2 normalization to prevent overfitting.
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8.3 Experiments

8.3.1 Datasets

We evaluate the performance of UDE framework on different synthesized dataset

search tasks using the following datasets:

• Porto [172]: This is a trajectory dataset collected from 442 taxis in the city

of Porto, Portugal over 19 months and contains 1.7 million trajectories. It

was originally proposed for the task of predicting the destination of taxi trips

based on initial partial trajectories.

• ShapeNet [45]: ShapeNet is point cloud dataset containing about 51,300 3D

CAD models from 55 common object categories (e.g., table, car, airplane,

etc.).

• MixText: We synthesize MixText from 17 popular text classification datasets:

IMDB reviews [158], AG’s News [303], DBpedia ontology classification dataset [303],

Amazon reviews [303], Yelp reviews [303], BANKING77 [39] and 11 datasets

from TweetEval [18].

Among the above datasets, the first two datasets are naturally datasets of point

sets. Porto are ordered point sets, while ShapeNet and MixText are unordered point

sets. In fact, the point set representations for text documents can be considered as

one type of Bag-of-Words representations because the order information is lost. It

is also one of the weaknesses of unordered point set representations.

For Porto and ShapeNet, we sample 1,000 point sets, respectively. We calculate

the Hausdorff distance dh between two point sets and use 1 − dh as the ground-

truth dataset similarity, which results in 1,000 × 1,000 pairs. We use 20% pairs for

training and the rest for testing.

To synthesize the training set of MixText, we use the training set portion of each

text collection. We sample 20 texts from each text collection, and for each text, we

sample one positive text from the same text collection and one negative text from

another text collection. In other words, two texts form a positive pair if they are
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from the same text collection, or form a negative pair if they are from different text

collections. To synthesize the testing set of MixText, we use the testing set portion

of each text collection. We sample 5 texts from each text collection. For each text,

we increase the number of positive samples to 10 and negative samples to 500. So

the evaluation for each query dataset (a text) is based on the ranking the 510 texts.

8.3.2 Results

We compare the performance of PointNet++ Encoder and our Graph Encoder in

Table 8.1 with Precision@k and Recall@k. We stack two layers of GCN [124] as the

graph encoder. The Adam optimizer [123] is used to optimize all models. We train

each model for 30 epochs with learning rate of 1e-3 and batch size of 200.

For MixText, we also compare with sentence-BERT [216] which is a state-of-

the-art method for calculating similarities between sentence pairs. We use the

BERT-base-cased2 to initialize the sentence-BERT. We train sentence-BERT with

10 epochs with batch size of 16 and maximum input length of 128. The Adam

optimizer with learning rate of 1e-5 is used. We also use a linear learning rate decay

schedule with warm-up of 0.1. For Porto and ShapeNet, we use DIG representations

as input of graph encoders. For MixText, we use SIG representations as input of

graph encoders.

Table 8.1: Results on different datasets.

Dataset Encoder Type P@5 P@10 P@50 R@5 R@10 R@50

Porto
Graph Encoder 0.6769 0.6333 0.4781 0.0677 0.1267 0.4781
PointNet++ 0.6398 0.5554 0.3707 0.0640 0.1111 0.3707

ShapeNet
Graph Encoder 0.4000 0.6000 0.4800 0.0400 0.1200 0.4800
PointNet++ 0.4000 0.6000 0.2800 0.0400 0.0600 0.3000

MixText
Graph Encoder 0.4014 0.4316 0.2333 0.1396 0.3031 0.8228
PointNet++ 0.3653 0.3936 0.2317 0.1330 0.2858 0.8156
sentence-BERT 0.1906 0.1376 0.0588 0.0953 0.1376 0.2941

2https://huggingface.co/bert-base-cased
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From the results, we can see that the graph encoder usually performs better than

PointNet++ on different modalities. However, graph encoder shows less advantage

on ShapeNet since PointNet++ is originally designed for point cloud datasets. For

both encoders, the top-k precision decreases when k increases from 10 to 50 due to

the difficulty of the task.

8.4 Summary

This chapter presents a novel method of learning universal dataset encoders. We

argue that datasets in various formats are either point sets or can be translated into

point sets. Then we can adapt Siamese networks to learn dense representations for

datasets which can be used for retrieving similar datasets with a query dataset.

8.5 Bibliographic Notes

Retrieving similar datasets with an example dataset has been studied by multiple

communities. In this section, we review the recent work of similar dataset search

for datasets in different modalities.

Ranking a collection of documents according to their semantic similarity to a

query document is an important task in information retrieval. Ginzburg et al. [96]

adopt the RoBERTa [153] language model as a backbone and continue training

the model with a self-supervised target where sentence pairs sampled from the same

document are positive samples and sentence pairs sampled from different documents

are negative samples. During inference, two input documents are decomposed into

sentences and a final similarity score is reduced from a pairwise sentence-similarity

matrix.

Retrieving related images from a database with an input image is also called

Content-Based Image Retrieval (CBIR) in the computer vision community [133,

101]. El-Nouby et al. [84] propose to train a transformer model [256] with a Siamese

architecture for image retrieval. Two images are mapped into a common latent
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space by the transformers. Contrastive loss combined with an entropy regularizer is

used to train the resulting model.

Finding similar trajectories given a query trajectory [266, 267] is a fundamental

task in smart city applications such as ridesharing [233] and traffic analysis [308, 99].

The first deep learning approach to learn representations of trajectories are proposed

by Li et al. [145]. They first partition the space into cells of equal size and then

map a trajectory into a sequence of discrete tokens. A seq2seq-based model [243] is

used to encode a trajectory and recover its distorted counterpart. Wang et al. [273]

propose the task of subtrajectory search problem which aims to return a portion of

a trajectory that is the most similar to a query trajectory. A series of algorithms

are developed which include both exact and approximate ones.

Depending on the characteristics of different modalities, the pre-processing steps

and model structures can be very different. In this chapter, we propose our pre-

liminary study on an intermediate representation in which the same model can be

adopted to learn representations for datasets in different modalities and the repre-

sentations can be used for dataset search.
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Chapter 9

Conclusion and Future Work

In this chapter, we conclude this dissertation. We first summarize our research

findings. Then, we discuss several future directions in dataset search.

9.1 Summary

With a growing number of datasets, dataset search has become an important task

in recent years. Making datasets discoverable like Web pages is meaningful to facil-

itate dataset reuse and generate real value from data. In this dissertation, we first

systematically introduce the various techniques that can help build a dataset search

engine. Then we propose various methods for dataset augmentation and dataset

search. Our detailed contributions are summarized as follow:

• We review technologies from multiple communities (i.e., data management,

machine learning, semantic web and information retrieval) that can be used

to build a dataset search engine. We break down the pipeline of a dataset

search engine into four parts. We discuss how to extract or crawl datasets

from different sources, what tasks can be done to better manage datasets and

different methods of multiple types of dataset search tasks.

• An ontology designed specifically for AI-related papers and an information

extraction framework is proposed. The ontology defines important classes
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and properties about AI tasks. A relation classification method is adopted to

extract data from research papers. We show the extracted data can be used

to construct a knowledge base and support academic applications including

academic dataset search.

• A feature-based approach to solve the task of schema label generation is pro-

posed. Based on our observations, we propose a list of heuristics to extract

features from a table column and treat the schema label generation as a multi-

class classification task. Through schema label generation, more common

(and thus understandable) schema labels can be provided to allow for broader

schema matches in contexts such as dataset search and data linking. In our ex-

periments, we find that our method often gives predictions that are synonyms

or hypernyms of the original schema label.

• A schema label enhanced ranking framework for tabular dataset search is pro-

posed. The framework has two stages: in the first stage, a schema label gener-

ator is trained to generate additional schema labels for each dataset column;

in the second stage, given a user query, datasets are ranked by their original

fields together with generated schema labels. Instead of using hand-curated

features, we learn the latent feature representations of schema labels by a

CoFactor model in which the dataset-schema label interactions and schema

label-schema label interactions are captured. Our experimental results show

that combining the scores for generated schema labels with the traditional

ranking scores for text fields can help rank the datasets better.

• A table search method based on the deep contextualized language model BERT

is proposed. We study how to encode table content considering the table

structure and input length limit of BERT. We also propose an approach that

incorporates features from prior work on table retrieval and jointly trains them

with BERT. Our experimental results show that using the max salience selector

with row items is the best strategy to construct BERT input.

• A new test collection for the task of Web table retrieval is proposed. Compared
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with previous datasets, WTR covers a broader range of topics and includes

tables from over 61,000 different domain names. Since a Web table usually has

rich context information such as the page title and surrounding paragraphs,

we not only provide relevance judgments of query-table pairs, but also the

relevance judgments of different table contexts with respect to a query, which

are ignored by previous test collections. In our experiments, we show that the

relevance of context fields can affect the training of table retrieval methods.

• A graph-based table search method is proposed. We build one or more graphs

from the whole table corpus so that complex relations are captured. Then

graph neural networks are used to learn the representations of queries and

tables from complex structures. Experimental results demonstrate the fea-

tures learned from multiple graphs can improve upon the text-based neural

IR models which treat a table as a flattened document. We also find that

our graph-based model is more robust when context information of a table is

missing.

• A new framework to learn the representations of datasets is proposed, repre-

senting a dataset as a point set. A graph-based data structure is developed

to organize point sets. In our experiments, we show that this representation

learning framework can be applied to datasets in different modalities and the

learned representations can be used for dataset search where the query is also

a dataset.

9.2 Future Work

9.2.1 Transfer Learning of Dataset Search

It is an interesting question to study the transferability of different models and

what features extracted from datasets in one domain also generalize to dataset

from another domain. Wikipedia pages usually have a common structure and the

extracted tabular datasets are well-formatted. However, the structure of different
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websites can be very different. For example, the page title of Wikipedia usually

represents an entity or a very informative event. While for some websites, the page

title can be very general and does not describe anything specific about the Web

page. Therefore, it is possible that some features extracted from one domain do not

generalize well to another domain. When we reproduce the features of LTR and

STR for the WTR collection proposed in Chapter 6, we disregard some features

proposed for Wikipedia specifically.

Recently, pre-training methods [77] show they have the ability to transfer knowl-

edge learned from pre-training tasks to downstream applications. One possible di-

rection is to propose pre-training tasks for dataset search. For example, we can mask

some content in the metadata (e.g., title) and then recover it. We can also construct

a knowledge graph from datasets [34] and then adopt pre-training strategies [107,

207] for graphs. Multimodal pre-training has been studied to learn cross-modal rep-

resentations which can perform well on multi-modal tasks [14, 208, 268, 235, 290].

Since the content of datasets can be in different modalities and the metadata can

be considered as text, multimodal pre-training can be applied to datasets to learn

representations that are more robust and generalizable.

9.2.2 Multifield Scoring

The importance of metadata fields can vary depending on the source of datasets. A

dataset is often associated with multiple metadata fields and can be considered as

a multifield document. It has been shown that combining similarities and rankings

of different sections in a document can lead to better performance for Web docu-

ment retrieval [275]. Ogilvie et al. [187] present a mixture-based language model

combining different document representations for known-item search in structured

document collections. They find that document representations that perform poorly

can be combined with other representations to improve the overall performance.

Robertson et al. [223] introduce BM25F which is an extension of BM25 that com-

bines the original term frequencies in the different fields in a weighted manner. A

field relevance model is proposed by Kim and Croft [121] to incorporate relevance
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feedback for field weights estimation. A Bayesian networks-based model for struc-

tured documents is proposed by Piwowarski and Gallinari [202]. Kim et al. [122]

propose a probabilistic model for semi-structured document retrieval. They calcu-

late the mapping probability of each query term and use it as a weight to combine

the language models estimated from each field. Svore et al. [244] develop Lambd-

aBM25, a machine learning approach to BM25-style retrieval that learns from the

input attributes of BM25 and performs better than BM25F for multifield document

ranking. Zamani et al. [291] propose a neural ranking model that learns an ag-

gregated document representation from field-level representations and then uses a

matching network to produce the final relevance score. In Chapter 4, we propose

an unsupervised method to score different sections of a dataset. In the future, we

believe the supervised methods proposed for multifield document retrieval task can

also help dataset search where metadata fields are scored with learned weights.

9.2.3 Search-Centric Applications

Dataset search can serve as an intermediate step for many downstream applica-

tions [300]. Retrieved tabular datasets can be further used as input for open do-

main question answering systems [195, 194]. In transfer learning, finding relevant

datasets for pretraining (source domain) is critical for a model to have a good

performance when fine-tuned with a small set of labelled data on a downstream

task (target domain) [181, 67, 283]. Retrieved unlabelled data can also be used as

weakly-supervised signals for various machine learning tasks [165, 144, 81].

In the future, dataset search may become an infrastructure-level service for AI

applications where clients are different AI models. Benefiting from the large number

of indexed datasets, an AI model can be trained with active learning strategies more

easily [129]. A major obstacle to train a Web-scale dataset search engine is the lack

of training data. The interaction between a dataset search engine and its clients

can provide task-specific training signals. One possible future direction is using

reinforcement learning to maximize the rewards that indicate the performance of

downstream applications. For example, the evaluation score such as accuracy from
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a downstream question answering system can be used as a reward to train the

dataset search engine. Since different downstream applications may use different

evaluation metrics, multiple types of rewards can be used as training signals.

9.3 Conclusion

In this dissertation, we develop methods to tackle the problems of dataset search

and augmentation. We show how data can be extracted from research articles to

support scholar dataset search. We analyze the patterns in datasets and propose

methods to generate table schema labels using features extracted from datasets. For

unsupervised tabular dataset search, we propose to rank a dataset with generated

schema labels. For supervised tabular dataset search, we propose a pre-trained lan-

guage model-based method to extract powerful features and a graph-based model

to learn robust features. We also propose a representation learning framework that

unifies the training target of dataset representation learning for different modalities.

Experimental results on various datasets show that we advance the state-of-the-

art in dataset search and augmentation. Future work may consider: (1) adopt-

ing transfer learning strategies to enable dataset search from different domains;

(2) designing supervised models to utilize multiple metadata fields; (3) building

an infrastructure-level dataset search engine to support various downstream data-

centric applications.
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